

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ENTERPRISE ANALYSIS OF STRATEGIC

AIRLIFT TO OBTAIN COMPETITIVE

ADVANTAGE THROUGH FUEL EFFICIENCY

DISSERTATION

Adam D. Reiman, Lt Col, USAF

AFIT-ENS-DS-14-S-16

The views expressed in this dissertation are those of the author and do not reflect the official
policy of the United States Air Force, the Department of Defense, or the United States
Government. This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

AFIT-ENS-DS-14-S-16

ENTERPRISE ANALYSIS OF STRATEGIC AIRLIFT TO OBTAIN COMPETITIVE

ADVANTAGE THROUGH FUEL EFFICIENCY

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Adam D. Reiman, BS, MS

Lt Col, USAF

September 2014

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

//signed//

//signed//

//signed//

17 Jul 2014

17 Jul 2014

17 Jul 2014

AFIT-ENS-DS-14-S-16

ENTERPRISE ANALYSIS OF STRATEGIC AIRLIFT TO OBTAIN COMPETITIVE

ADVANTAGE THROUGH FUEL EFFICIENCY

Adam D. Reiman, BS, MS

Lt Col, USAF

Approved:

_____________________________________ __________________
Jeffery D. Weir, PhD (Chairman) Date

_____________________________________ __________________
Alan W. Johnson, PhD (Member) Date

_____________________________________ __________________
Maj Thomas E. Dube (Member) Date

Accepted:

_____________________________________ __________________
ADEDEJI B. BADIRU, PhD Date
Dean, Graduate School of Engineering
and Management

iv

AFIT-ENS-DS-14-S-16

Abstract

The rising cost of fuel has led to increasing emphasis on fuel efficiency in the aviation

industry. As fuel costs become a larger proportion of total costs, those entities with a dynamic

capability to increase their fuel efficiency will obtain competitive advantage. Fuel efficiency

must be assessed simultaneously with cargo throughput which is the primary goal of airlift

effectiveness. Assessing cargo throughput and fuel efficiency requires the creation of all routes

of potential value for a given set of requirements that need to be airlifted from source to

destination airfield. Routing in this context refers to the set of potential sorties from source to

destination. This set of potential routings rapidly increases as source and destination approach

antipodal points on the globe. The time required for route computation can be significantly

reduced through the use of nodal reduction. Computation time is a critical component to the

effective operational comparison of routing alternatives based on cargo throughput and fuel

efficiency. Use of the proposed model can assist evaluation of enterprise wide efficiency and

effectiveness.

v

AFIT-ENS-DS-14-S-16

To my loving family.
Thank you for all of your support.

vi

Acknowledgements

 I would like express sincere appreciation to my dissertation advisor, Dr. Weir, and

committee members, Dr. Johnson and Dr. Dube, for their support in the development of this

research.

 Adam D. Reiman

vii

Table of Contents

Page

Abstract .. iv

Acknowledgements .. vi

List of Figures ... x

List of Tables ... xiii

List of Abbreviations ... xiv

I. Introduction ... 1

II. Literature Review.. 3

Airlift Metrics ... 6
Competitive Advantage .. 8
Alliancing .. 8
Organizational Culture .. 8
Routing .. 9
Tabu Search .. 12
Value Focused Thinking ... 13
Scheduling... 13

III. Original Contribution .. 16

IV. Journal Articles ... 17

Competitive Advantage and Fuel Efficiency in Aviation ... 17
Introduction ... 17
Aviation Fuel Efficiency and Dynamic Capabilities .. 17
Fuel Efficiency Index .. 21
The Data ... 22
Great Circle Distance ... 24
Load Factors .. 26
Inactive Sorties .. 31

viii

Fuel ... 32
Managerial Implications for City Pair Analysis .. 35
Incorporating Metrics into the Aviation Industry Fuel Efficiency Model 38
Findings and Conclusion .. 40

Distance Value Model for Nodal Reduction of the Strategic Airlift Problem 42
Introduction ... 42
Airlift Distance Value Model ... 46
Payload Movement.. 48
Cycle Complete.. 56
Fuel Efficiency ... 57
Circadian Rhythm .. 58
Material Airlift Distance Value Model Weights .. 60
Cutoff Distance Model .. 60
Results .. 62
Conclusion ... 68

Nodal Reduction Heuristics Applied to Route Generation for Enterprise Airlift
Evaluation ... 70

Introduction ... 70
Requirements... 73
Requirement based heuristics .. 75
Minimum cutoff distance ... 75
Total distance multiple ... 79
Airfield characteristic heuristics ... 82
Effective runway length .. 83
Runway width.. 89
Pavement strength .. 90
Departure obstacles .. 92
Diplomatic clearances ... 94
Combined nodal reduction ... 96
Speed and Accuracy .. 97
Conclusion ... 99

V. Methodology ... 101

Route Alternative Generation ... 101
Route Comparison .. 105

VI. Results ... 106

Aircraft Type ... 106
Crew Complement .. 109
Staging .. 110
Trans-load ... 111
Air Mobility Command Routes .. 112

ix

VII. Conclusions ... 116

Appendix A: Nodal Reduction and Route Generation Algorithms .. 119

Appendix B: Aircraft Performance Algorithms .. 141

Appendix C: Airfield, Distance, Pavement and Airspace Algorithms 161

Bibliography ... 183

x

List of Figures

Figure Page

1. Literature Review (Referenced in Articles) .. 4

2. Additional Relevant Sources... 5

3. Aviation Industry Fuel Efficiency Model ... 18

4. C-17 Great Circle Distance and FEI ... 25

5. C-5 Great Circle Distance and FEI ... 25

6. C-17 Load Factor and FEI .. 30

7. C-5 Load Factor and FEI .. 30

8. C-17 Fuel Consumed and FEI... 33

9. C-5 Fuel Consumed and FEI... 33

10. KDOV-ETAR C-17 Load Factors and FEI .. 37

11. KDOV-ETAR C-17 Fuel Consumed and FEI .. 37

12. Dover airfield to Ramstein airfield “Lens” (GCmapper) .. 44

13. Impact of minimum cutoff distance on nodal reduction ... 45

14. Strategic airlift problem planning distance value hierarchy ... 47

15. Maximum payload vs distance flown ... 53

16. Scenario one value .. 62

17. Scenario two value .. 63

18. Scenario three value .. 64

19. Cutoff Distance Models .. 65

20. Minimum cutoff distance model used for analysis ... 66

21. Nodal reduction computation time reduction ... 67

xi

22. Eye shape (GCMap) .. 71

23. En route airfields vs distance for selected requirements ... 75

24. Eye shape with cutoff distance applied (GC Mapper) .. 76

25. Cutoff distance model ... 77

26. Average percentage airfield reduction vs OD pair distance ... 78

27. Airfield reduction by constraining ψ (Google Maps API) ... 80

28. Impact of ψ on route value .. 81

29. Average monthly sea level temperature vs latitude (1981-2010) ... 84

30. Number of airfields remaining vs actual runway length ... 87

31. Impact of latitude and elevation on 𝝈𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 − 𝝈𝑨𝒄𝒕𝒖𝒂𝒍12T .. 88

32. Airfield percent reduction by filtering on regulation minimums .. 89

33. Airfield reduction based on pavement strength and aircraft gross weight 91

34. C-17 maximum gross takeoff weight vs climb gradient 𝝉12T ... 94

35. Politically sensitive countries as percentage of total .. 95

36. Impact of combined heuristics on en route airfield reduction .. 97

37. Time Comparison for Route Analysis .. 98

38. Cargo Throughput of Optimal Route Analysis ... 99

39. MDS cargo throughput and distance... 107

40. MC rate adjusted MDS cargo throughput and distance .. 108

41. Fuel efficiency and distance.. 109

42. Crew complement cargo throughput and distance .. 110

43. Staging cargo throughput and distance ... 111

44. Trans-load cargo throughput and distance .. 112

xii

45. East route (orange) and top fuel efficient route (red) ... 114

46. West route (orange) and top fuel efficient route (red) .. 115

xiii

List of Tables

Table Page

1. Aviation Industry Strategic Decision Making for Fuel Efficiency ... 19

2. Air Mobility Command FEI by MDS November 2010 .. 23

3. Descriptive Statistics for Air Mobility Command FEI November 2010 23

4. Air Mobility Command Load Factors November 2010 .. 29

5. Air Mobility Command Inactive Miles Per Sortie November 2010 32

6. Fueling Accuracy and Fuel Burn Ratio .. 35

7. Aircraft-Specific Payload Movement Assumptions ... 49

8. Climb regression terms ... 50

9. Descent regression terms .. 51

10. Specific range regression terms .. 51

11. Mach and True airspeed regression terms .. 55

12. Effect of increasing en route airfields on the number of routes .. 72

13. Randomly selected OD pairs .. 74

14. Average monthly temperature 𝝋 regression coefficients and adjusted R2 85

15. Critical field length 𝜽 regression coefficients and adjusted R2... 86

16. Aircraft maximum weight parameters .. 91

17. Climb gradient 𝝉 regression coefficients and adjusted R2 .. 93

18. Top route comparison going East ... 113

19. Top route comparison going West .. 115

xiv

List of Abbreviations

ACN Aircraft Classification Number
AMC Air Mobility Command
APOD Aerial Port of Debarkation
APOE Aerial Port of Embarkation
CAMPS Consolidated Air Mobility Planning System
CFIT Controlled Flight Into Terrain
CFL Critical Field Length
CRAF Civil Reserve Air Fleet
DAFIF Digital Aeronautical Flight Information File
FDP Flight Duty Period
FEI Fuel Efficiency Index
GCD Great Circle Distance
GW Gross Weight
ICAO International Civil Aviation Organization
JP Joint Publication
KLBS Thousand Pounds
MC Mission Capable
MDS Mission Design Series
MOG Maximum on the Ground (Working or Parking)
MTM/D Million Ton Miles Per Day
NM Nautical Mile
NPS Naval Postgraduate School
NRMO NPS/RAND Mobility Optimizer
OCS Obstacle Clearance Surface
OD Origin Destination
PCN Pavement Classification Number
PFEE Payload Fuel Energy Efficiency
PMAX Payload Maximum
RAM Random Access Memory
RCR Runway Condition Reading
RSC Runway Surface Condition
SAP Strategic Airlift Problem
SDVF Single Dimension Value Function
SFC Specific Fuel Consumption
TRANSCAP Transportation System Capability
TSP Travelling Salesman Problem
VFT Value Focused Thinking
VRP Vehicle Routing Problem

1

ENTERPRISE ANALYSIS OF STRATEGIC AIRLIFT TO OBTAIN COMPETITIVE

ADVANTAGE THROUGH FUEL EFFICIENCY

I. Introduction

 Fuel costs are an increasing portion of the total costs for the aviation industry. These

rising costs elevate the relative importance of fuel efficiency. Firms developing a dynamic

capability to enhance fuel efficiency can obtain a sustained competitive advantage over their

competitors. To assist management in developing this dynamic capability, a framework is

proposed. Within this framework, several metrics are introduced to assess the success of a firm’s

fuel efficiency efforts. The one metric that addresses fuel efficiency across the enterprise is the

Fuel Efficiency Index (FEI). The FEI was examined against great circle distance, load factor and

fuel consumed from a month of Air Mobility Command (AMC) sorties to obtain an

understanding of the primary interrelationships.

 An airlift enterprise is established to move customer requirements from a source airfield

to a destination airfield. With each source and destination airfield, a network of nodes exists

representing potential airfields and edges representing potential sorties. The edges leading from

source to destination represents a route alternative. The set of all route alternatives can be

contrasted using the FEI. Every sortie forming an edge has a value associated with it that is

dependent upon the length of the edge. To establish the value associated with sortie distance, a

model was created. Airlift planners can use this aircraft specific distance model to eliminate

poor alternatives. The model can also be applied to select potential airfields as intermediate

fueling or cargo trans-load locations to enhance airlift enterprise effectiveness and efficiency.

 The number of airlift nodes represented by International Civil Aviation Organization

(ICAO) codes is large enough that executing comparisons against the set of all potential

2

alternatives is computationally extensive. To enhance the speed of execution for the comparison

of alternatives, a set of nodal reduction techniques was developed. The primary technique is

based upon the planning distance value model. The decision maker can adjust the weights

assigned to the planning distance value model based upon their preferences. Other nodal

reduction techniques include the total distance multiple, minimum/effective runway length,

minimum runway width, runway pavement strength, departure obstacles and diplomatic

clearances. The decision maker can select the values for nodal elimination. This affords the

decision maker the opportunity to trade increased execution speed for a decrease in the number

of potential alternatives. Since the speed of execution of the route algorithm is dependent upon

the pair of airfields selected, airfield pairs were selected at random to obtain a representative

example for further analysis.

3

II. Literature Review

 There exists an abundant body of knowledge associated with the theme of enterprise

airlift planning. To better understand previous contributions, the literature is broken down into

the following categories: airlift metrics, competitive advantage, alliancing, organizational

culture, routing, tabu search, value focused thinking and scheduling. A summary of the literature

currently referenced in the articles of chapter IV of this dissertation can be seen in Figure 1

below.

Airl
ift

 M
etr

ics

Com
peti

tiv
e A

dva
ntag

e

Allia
ncin

g

Org
an

iza
tio

nal
Cultu

re

Rou
tin

g

Tab
u Sea

rch

Valu
e F

oc
used

 Thinking

Sch
ed

ulin
g

Ai and Kachitvichyanukul (2009) ●
Alexander and Hall (1991) ●

Babikian et al (2001) ●
Baker et al (2002) ● ● ●

Balakrishnan et al (1989) ●
Barney (1986, 1991) ● ●

Bell and McMullen (2004) ●
Bodin (1990) ● ●
Chang (2008) ●

Crino et al (2004) ● ●
Crum and Morrow (2002) ●

Dijkstra (1959) ●
Dyer and Sarin (1979) ●

Eisenhardt and Martin (2000) ●
Gagnepain and Marin (2007) ●
Gendreau and Soriano (1998) ●

Hatch (1993) ●
Held and Karp (1962) ●
Hileman et al (2008) ●

Jackson et al (1996, 1999) ●
Karmarkar (1984) ●

Keeney (1994) ●
Lahiri (2003) ●

Lambert (2007) ● ●
Lee (2004) ●

Lei et al (2011) ●

Currently Referenced in Articles

4

Figure 1: Literature Review (Referenced in Articles)

 Figure 1 only addresses the body of literature currently referenced in the included

articles. There are a number of other sources that add to the body of knowledge that have not

been referenced inside of the articles. These sources are included in Figure 2. The categories

Airl
ift

 M
etr

ics

Com
peti

tiv
e A

dva
ntag

e

Allia
ncin

g

Org
an

iza
tio

nal
Cultu

re

Rou
tin

g

Tab
u Sea

rch

Valu
e F

oc
used

 Thinking

Sch
ed

ulin
g

Lewis (1998) ●
Li at al (2010) ●

Longo et al (2006) ●
Lund (1993) ●

Lurdes et al (1990) ●
Martin and Voltes-Dorta (2011) ●

Mazraati (2010) ●
Mihram and Nolan (1969) ● ●

Miravite and Schlegel (2006) ●
Murphy et al (1989) ●
Nagata et al (2010) ●

Naylor (2009) ● ●
Oster et al (2013) ●

Owen (2008) ●
Pascal (1665) ●

Pisinger and Ropke (2007) ●
Rappaport et al (1992) ●

Reiman et al (2011) ●
Rutherford and Zeinali (2009) ●

Samm and Perelli (1982) ●
Schein (1984) ●

Schmenner (1998, 2001, 2004) ●
Sere (2005) ● ●

Thomchick (1993) ●
Vincenty (1975) ●
Watson (2003) ●
Yamani (1990) ● ●

5

will be expanded upon to better understand each reference’s contribution. Many of the

references provided substantial contribution to areas outside the scope of this research.

Figure 2: Additional Relevant Sources

Airl
ift

 M
etr

ics

Com
peti

tiv
e A

dva
ntag

e

Allia
ncin

g

Org
an

iza
tio

nal
Cultu

re

Rou
tin

g

Tab
u Sea

rch

Valu
e F

oc
used

 Thinking

Sch
ed

ulin
g

Balas and Padberg (1972) ●
Balinski (1963) ●

Barnes et al (2004) ● ●
Becker and Smith (2000) ●

Brigantic and Merrill (2004) ●
Burke (2004) ●

Burstein (2003) ●
Clay (1989) ●

Dantzig (1958) ● ●
Ferguson (1956) ●

Flood (1955) ●
Gill (2008) ●

Glover and McMillan (1986) ●
Gueret et al (2003) ● ●

Hartlage (2012) ●
Jin et al (2012) ● ●

Koepke et al (2008) ●
Koskosidis et al (1992) ● ●

Kress and Golany (1994) ●
Morton et al (1995) ●
Nielsen et al (2004) ● ●

Rappaport et al (1991) ●
Rathi et al (1992) ●
Rink et al (1999) ●
Ruan et al (2011) ● ●

Tryon (2005) ●
Weir and Johnson (2004) ●

Wilkins et al (2006) ●
Wu et al (2009) ●

Additional Articles Researched

6

Airlift Metrics

 Mihram and Nolan (1969) built a stochastic simulation of the strategic airlift system.

Their contributions to this dissertation included defining the Strategic Airlift Problem (SAP) and

developing the ton miles per day airlift productivity metric. Vincenty (1975) developed an

algorithm that calculated an accurate elliptical distance between two points on the Earth. This

algorithm was used for all dissertation distance calculations. Yamani (1990) provided a baseline

technique for modeling specific aircraft fuel consumption. His model was dependent upon flight

at a given altitude. This dissertation expands upon that model and computes fuel consumption at

any given flight altitude. Lurdes et al. (1990) and Alexander and Hall (1991) developed

pavement classification measures used in the third article of this dissertation.

 Lund (1993) supported the assertion that the tons portion of ton-miles was constrained by

too few intermediate cargo locations in the Persian Gulf War. Thomchick (1993) also assessed

cargo throughput issues associated with the Persian Gulf War. Lewis (1998) analyzed the

impacts of Civil Reserve Air Fleet (CRAF) activation due to insufficient military airlift

capability. Gendreau and Soriano (1998) evaluated the structural capacity of airfield pavements.

This analysis was utilized in the third article of this dissertation. Schmenner (1998, 2001 &

2004) and Babikian, Lukachko and Waitz (2001) demonstrated the relationship between aircraft

size and fuel efficiency. The metric selected for their analysis was gallons consumed per

available seat mile, which was an inverse of the FEI metric that became a key component of the

value model proposed in the second article of this dissertation. Baker, Morton, Rosenthal and

Williams (2002) developed a large scale linear programming model for optimizing strategic

airlift capability. Their contribution to the metrics portion of this dissertation is in how they

measured airfield constraints such as fuel and working Maximum on the Ground (MOG).

7

 Lahiri (2003) proposed metrics for contrasting freight output among differing modes.

The airlift metrics selected by Lahiri were air revenue ton miles and air revenue passenger miles.

Watson’s (2003) contribution to metrics included his definition for an airlift cycle. This

definition was incorporated into the value model of the second article of this dissertation.

Brigantic and Merrill (2004) in their Algebra of Airlift further validated the use of the selected

metrics and provided the equations for the Million Ton Miles per Day (MTM/D) metric. Their

algebra makes the assumption that the tons in MTM/D is based on an average payload. This

average payload is dependent upon a planning factor that is a weak approximation of reality.

This dissertation more accurately models tons in MTM/D by calculating payload capability

instead of using a planning factor.

 Lee (2004), Hileman et al. (2008), Owen (2008) and Rutheford and Zeinali (2009)

developed metrics that included a ratio of energy consumption and output. Lee used Megajoules

per Revenue Passenger Kilometers. Hileman et al. used Kilogram Kilometers per Megajoule

and called this metric Payload Fuel Energy Efficiency (PFEE). PFEE is the primary contributor

to the Fuel Efficiency Index used in the first article. Rutherford and Zeinali used Gallons per

Available Seat Kilometers. Sere (2005) and Naylor (2009) suggested distance from origin,

parking capacity, fuel capacity, diplomatic relations, proximity to seaports and distance to

destination as measures of value when contrasting en route alternatives for airlift routing.

Mazraati (2010) highlighted the importance of fuel efficiency metrics by illustrating how fuel

costs are increasing as a proportion of airline’s total costs. Martin and Voltes-Dorta (2011) used

aircraft gross weight as a proxy for the aircraft classification number metric. Oster et al. (2013)

analyzed several aircraft safety metrics. Oster’s analysis supported a departure obstacle nodal

reduction technique in the third article of this dissertation.

8

Competitive Advantage

 Obtaining a sustained competitive advantage is an important goal for many firms.

Barney (1991) developed a resource based view of sustained competitive advantage. He

suggested that for resources to provide a sustained competitive advantage, they must be valuable,

rare, inimitable and non-substitutable. Since fuel is not rare or inimitable, it will not provide for

a sustained competitive advantage. Eisenhardt and Martin (2000) adjusted this resource based

view to suggest that a firm’s dynamic capabilities can achieve a sustained competitive advantage.

The first article contributed to this assertion by suggesting that establishing fuel efficiency as a

dynamic capability can lead to a sustained competitive advantage for the aviation industry.

Alliancing

 Gagnepain and Marin (2007) concluded that airline alliances are able to lower prices

because they result in lower costs. Alliancing can be applied to fuel efficiency in that combining

requirements can result in higher load factors. Increased load factors result in greater output per

energy input. Pooling cargo through alliances to ensure high load factors can be a strategy to

enhance fuel efficiency, reduce costs and further establish a firm’s competitive advantage.

Organizational Culture

 Schein (1984) highlighted the impact of a firm’s structure and reward system during the

development of organizational culture. Barney (1986) indicated that organizational culture is a

potential source for sustained competitive advantage. If a firm’s organizational culture is fuel

efficiency focused, then that culture has the ability to become valuable, rare, hard to imitate and

not easily substituted. Hatch (1993) remarked that changing an organizational culture is hard to

achieve.

9

Routing

 Pascal’s (1665) triangle models the number of unidirectional routing alternatives given a

number of intermediate nodes and a number of en route stops. Pascal’s work thus establishes the

computational complexity of the strategic airlift problem. His work illustrates the need for nodal

reduction techniques to reduce complexity and increase the speed with which valuable

alternatives can be analyzed and prioritized. Pascal highlights the value posed by limiting

intermediate nodes and en route stops.

According to Flood (1955), the Travelling Salesman Problem (TSP) was first posed by

Hassler Whitney in a seminar talk at Princeton in 1934. The TSP attempted to find the shortest

routing among a set of nodes ensuring that every node is visited once. The SAP does not require

that every node be visited like the TSP, but instead seeks to pick up cargo at a given node and

deliver it to a given node with a varying number of intermediate nodes. The TSP is a useful

component in the analysis of the SAP, in that given a pickup node and multiple delivery nodes,

the TSP can select the optimal delivery route.

 Dantzig and Ramser (1958) analyzed routing for the optimal delivery of a fleet of

gasoline trucks between a bulk terminal and a large number of delivery stations. The problem

ensured all required supplies are delivered while minimizing the total mileage driven. This

Vehicle Routing Problem (VRP) with pickup and delivery expands upon the TSP and more

accurately models the SAP. Dijkstra’s (1959) algorithm attempts to traverse a set of nodes over

the minimal cost path and has potential application for edge determination for the VRP as

applied to the SAP.

 Held and Karp (1962) reduced the computation time of the TSP using dynamic

programming. Balinski and Quandt (1963) used an integer programming method on the truck

10

delivery problem. Mihram and Nolan (1969) developed a stochastic simulation of the strategic

airlift system but manually entered 1,820 preferred routes. Balas and Padberg (1972) discussed

the VRP as a set covering problem. The sets under consideration are the requirements being

delivered. Karmarkar (1984) developed a linear program technique that could be applied to

VRPs. Balakrishnan, Chien and Wong (1989) used mixed integer programming with Lagrangian

relaxation to obtain a set of optimal alternative routes. They used airline operating profit as the

distinguishing criteria between routes.

 Bodin (1990) assessed over 20 years of routing and scheduling problems. He discussed

several constraints that tend to complicate the problem including multiple vehicle types,

vehicle/location dependency, time windows and route length. The SAP has all of these

constraints and others. He recommended the use of heuristics to simplify the problem. Yamani

(1990) determined the optimal location for aerial refueling of a cargo aircraft given an origin and

destination airfield node. Koskosidis, Powell and Solomon (1992) solved the VRP with time

windows as a mixed integer program with optimization based heuristics. Instead of hard time

windows, they model the problem with soft time windows using early or late penalty costs.

Rappoport, Levy, Golden and Toussaint (1992) modeled airlift planning as a vehicle routing

problem with time and capacity constraints.

 Rink, Rodin, Sundarapandian and Redfern (1999) modeled the routing of airlift aircraft

using the double sweep method. They focused on the critical leg distance as the measure to

evaluate between routes. Their simplification failed to address aircraft type, capability, crew

scheduling, staging and cargo transfer. Cargo transfer eliminates the importance of the critical

leg. Baker, Morton, Rosenthal and Williams (2002) optimized airlift using large scale linear

programming using the NPS/RAND Mobility Optimizer (NRMO). Their analysis considered

11

aircraft capability, crew scheduling, airfield parking/servicing constraints, airfield fueling

constraints and the transfer of cargo. Routing alternatives for the analysis were entered manually

and not created from potential nodes.

 Gueret, Jussien, Lhomme, Pavageau and Prins (2003) developed an aircraft loading

algorithm and a sortie reduction algorithm based on local search routing manipulation. Bell and

McMullen (2004) applied an ant colony optimization technique to the VRP. Barnes, Wiley,

Moore and Ryer (2004) solved the Aerial Fleet Refueling Problem using group theoretic tabu

search. They considered the problem a multiple vehicle, multiple depot VRP. Crino, Moore,

Barnes and Nanry (2004) addressed the theater distribution vehicle routing and scheduling

problem using group theoretic tabu search. The primary objective of this multi-modal research

was to minimize unmet demand. Nielsen, Armacost, Barnhart and Kolitz (2004) analyzed the

channel route structure for airlift using composite variable mixed integer programming. Sere

(2005) asserted the importance of diplomatic relations when making routing decisions. Sere’s

work contributed to a nodal reduction technique in the third article of this dissertation. Longo et

al. (2006) provided a transform for turning capacitated arc routing problems into capacitated

VRPs. Pisinger and Ropke (2007) introduced the adaptive large neighborhood search heuristic

to solve VRPs.

 Lambert (2007) addressed the SAP using tabu search. Routing development was based

off of a set of previously determined routes and failed to analyze all potentially valuable routes.

Chang (2008) addressed route selection for international intermodal networks. Naylor (2009)

performed a comparative analysis of the en route system. Wu, Powell and Whisman (2009)

merged optimization and simulation for the SAP. Their intuitive technique utilized the stochastic

nature and flexibility of simulation while retaining the benefit of the deterministic nature of

12

optimization. Ai and Kachitvichyanukul (2009) applied particle swarm optimization to solve the

VRP. Li, Lam, Wong and Fu (2010) attempted to solve the routing problem using integer

programming. Nagata (2010) used a penalty based edge assembly memetic algorithm to solve

the VRP with time windows.

 Lei, Laporte and Guo (2011) solved the VRP with stochastic demands and time windows.

This is an important contribution, since the time phased force deployment list is constantly

updated with new requirements. A forecast of those requirements with a given distribution can

allow airlift planners to address worst case risk scenarios. Ruan, Zhang, Miao and Shen (2011)

combined the vehicle loading and capacitated VRP. Their hybrid approach utilized honey bee

mating optimization. Hartlage (2012) utilized the ant colony system for solving the resource

constrained shortest path problem. Their work focused on rough cut capacity planning in multi-

modal freight networks. Jin, Crainic and Lokketangen (2012) developed parallel multi-

neighborhood tabu search for capacitated VRP. Their contribution is to adapt VRP algorithms to

the multi-threading capabilities of current processors.

Tabu Search

 Tabu search is a method for reducing the computation time for the VRP created by

Glover and McMillan (1986). Crino, Moore, Barnes and Nanry (2004) addressed the VRP with

tabu search from a theater distribution perspective. Lambert (2007) analyzed the SAP using a

tabu search methodology. Jin, Crainic and Lokketangen (2012) adapted tabu search to solve the

VRP with parallel processing algorithms. Tabu search is an effective method for solving large

scale optimization capacitated VRP problems. The goal of the research of this dissertation is not

on the selection of an optimal solution, but on the ranking of a large set of highly valued

solutions.

13

Value Focused Thinking

 Keeney (1994) established the concept that alternatives are only valuable in that they can

achieve values. Jackson, Jones and Lehmkuhl (1996) applied this Value Focused Thinking

(VFT) to airlift in their 2025 future air and space capabilities operational analysis. The measures

of airlift value they concentrated on included payload weight, payload volume, range, response

and multi-role. Tryon (2005) applied VFT to contingency construction methods. Miravite and

Schlegel (2006) also utilized VFT in their Global En Route Basing Infrastructure Location

(GERBIL) model that assigned value to different attributes of airfield nodes.

Scheduling

 Ferguson and Dantzig (1956) initially devised a linear programming approach to

schedule the optimal allocation of a set of aircraft to a set of given routes. Dantzig (1958)

scheduled the delivery of bulk fuel from delivery trucks. Samm and Perelli (1982) stressed the

importance of circadian rhythm when scheduling. Clay (1989) used temporal constraint

propagation to schedule aircraft sorties against a set of requirements. This technique would be

useful for meeting airfield operating hours, slot times and required delivery dates.

 Bodin’s (1990) twenty years of routing and scheduling problems article addressed both

the temporal and allocation aspects of scheduling. For the temporal aspect, he noted a lack of

adequate research on time windows. For the allocation aspect, he supported the use of heuristics.

Rappaport, Levy, Golden and Fashbach (1991) allocated aircraft for scheduling using a

hierarchical payload matching procedure. This procedure ordered requirements by latest arrival

date, assigned aircraft to requirements by payload maximization, packed planes and then

combined requirements from partially filled aircraft.

14

 Rappaport, Levy, Golden and Toussaint (1992) developed an airlift planning heuristic for

the scheduling of aircraft. The heuristic utilized the plane preference value for allocation based

on payload maximization. Koskosidis, Powell and Solomon (1992) scheduled the VRP with

time windows by using soft time window constraints. Rathi, Church and Solanki (1992) built a

mathematical model to schedule the airlift of requirements. Their objective function penalized

early delivery of cargo, late delivery of cargo and selecting the non-preferred aircraft. Their

model considered both port and aircraft capacity constraints.

 Kress and Golany (1994) addressed the assignment of aircrews to aircraft in the

scheduling process. Morton, Rosenthal and Weng (1995) utilized the General Algebraic

Modeling System to schedule aircraft. Time window optimization was handled by cargo specific

penalties. Becker and Smith (2000) modeled the allocation of aircraft and aircrews using the

Consolidated Air Mobility Planning System (CAMPS) Barrel Allocator tool. An issue facing

scheduling using the Barrel Allocator tool is that the allocator cannot optimize his resources for a

set of requirements, but instead is given a set of routes with paired aircraft type that he needs to

allocate a specific aircraft tail and aircrew against. This often results in inefficient allocation.

 Baker, Morton, Rosenthal and Williams (2002) scheduled airlift using large scale linear

programming using the NRMO. Time penalties were utilized in the objective function for failure

to deliver cargo on time. Burstein, Ferguson and Allen (2003) enhanced scheduling by

integrating CAMPS with agent based mixed initiative control. Gueret, Jussien, Lhomme,

Pavageau and Prins (2003) developed an algorithm to load the aircraft and then adjust scheduling

of aircraft for more efficient loading opportunities. Burke, Love and Macal (2004) analyzed the

scheduled deployment of forces and equipment for the Army via truck and rail using the

15

Transportation System Capability (TRANSCAP) model. Weir and Johnson (2004) used a three

phase approach to address the bidline scheduling problem.

 Nielsen (2004) scheduled airlift missions for the channel structure using a four step

process. First, flight sequences were selected. Using the flight sequence, a generic mission is

built adding crew duty day restricted timeline to the flight sequence. Following the creation of

the generic mission, cargo is assigned to the single route mission. Finally, multiple routes are

examined for cargo aggregation opportunities. Wilkins, Smith, Kramer, Lee and Rauenbusch

(2006) described a prototype flight manager assistant to aid in dynamic rescheduling. The article

highlights the need for building resiliency into the original schedule. Murphy (2008) stressed the

importance of equipment availability at transload locations for scheduling.

 Gill (2008) analyzed the capability to schedule a deployment of a Stryker Brigade under

several scenarios within 96 hours. The analysis highlighted the limitations associated with hot

cargo. Koepke, Armacost, Barnhart and Kolitz (2008) developed an integer program to handle

scheduling disruptions caused by working MOG issues. Lei, Laporte and Guo (2011) solve the

capacitated VRP with stochastic demands and time windows enabling the scheduling of vehicles.

Ruan, Zhang, Miao and Shen (2011) combined the vehicle loading and capacitated VRP. Their

technique schedules the optimal cargo allocation across the potential solutions of the capacitated

VRP.

16

III. Original Contribution

 The original contribution from the first article of this dissertation includes the aviation

industry fuel efficiency model, the association between fuel efficiency and sustained competitive

advantage and the analysis of the FEI and its application to the fuel efficiency model. The article

in the Journal of Transportation Management provided a comprehensive analysis of fuel

efficiency metrics to understand their potential to enable a sustained competitive advantage in

airlift. The original contribution from the second article includes the development of an airlift

material distance value model and a minimum cutoff distance model. The distance value model

utilizes the metrics from the first article. This airlift material distance value model supports the

development of the minimum cutoff distance model for airfield nodal reduction

 The third article utilizes the cutoff distance model determined from the second article as a

nodal reduction and en route stop limiting heuristic. The original contribution of the third article

is a set of nodal reduction techniques that can be tailored by the decision maker to eliminate low

value airfields before route creation. The third article also assesses the value posed by the

various nodal reduction techniques, and examines the effects of combining nodal reduction

techniques. The combination of the first three articles sets the stage for rapidly creating a set of

high value routes for analysis. Given the set of routes and the metrics from the first article and

the value model metrics of the second article, the decision maker can sort routes upon their

parameter of focus. In addition, the decision maker will be able to compare and contrast routes

on the basis of time, cargo throughput, fuel efficiency and cost.

17

IV. Journal Articles

Competitive Advantage and Fuel Efficiency in Aviation

Introduction

 A firm’s efficient utilization of resources can be a source of competitive advantage. For

the aviation industry, the resource that makes up the largest component of total cost is fuel.

Aviation industry fuel encompassed 20% of total costs in 2007 and United Airlines saw their

cost of fuel, as a percentage of total cost, vary between 10% and 25% from 1973 to 2006

(Mazraati, 2010). A dynamic capability to obtain the efficient use of fuel and reduce those costs

could lead to a sustained competitive advantage.

 Barney (1991) suggests a rationale for a resource based view of sustained competitive

advantage. The two main assumptions of this view are that a firm’s resources are heterogeneous

and that those resources may be immobile across firms. In addition, resources that provide for a

sustained competitive advantage must be valuable, rare, inimitable and non-substitutable. Fuel is

not rare or inimitable. Fuel as a resource therefore will not provide for a sustained competitive

advantage. Yet, a firm’s dynamic capabilities properly applied to fuel efficiency can achieve that

advantage. Eisenhardt and Martin (2000) expanded upon Barney’s resource based view model

by adding dynamic capabilities as potential sources of sustained competitive advantage.

Aviation Fuel Efficiency and Dynamic Capabilities

 Dynamic capabilities as defined by Eisenhardt and Martin are those “organizational and

strategic routines by which firms achieve new resource configurations as markets emerge,

collide, split, evolve and die.” Some examples given of dynamic capabilities include alliancing,

product development and strategic decision making. Eisenhardt and Martin suggest that

dynamic capabilities can be a source of competitive advantage by altering a firm’s resource base.

18

The efficient utilization of fuel in the aviation industry is dependent upon alliancing, product

development and strategic decision making. A model for implementation of a fuel efficiency

strategy can be seen in Figure 3.

Figure 3: Aviation Industry Fuel Efficiency Model

 The model’s three elements -- strategic decision making, supply chain fuel efficiency and

an organizational culture of fuel efficiency directly impact a firm’s operational fuel efficiency.

Strategic decision making concerning fuel efficiency involves strategic investment and strategic

planning. Strategic investment involves the acquisition of aircraft, software, ground equipment

and infrastructure improvements. Examples of each of these categories can be seen in Table 1.

The critical factor in all of these strategic elements is to consider their fuel efficiency impact on

operations. This impact is associated with a purchased item’s fuel efficiency and weight.

Strategic investments need to consider weight minimization as an important requirement.

Operational
Fuel

Efficiency

Strategic
Decision
Making

Supply
Chain Fuel
Efficiency

Organizational
Culture

19

Strategic planning involves location management and process decisions. Location management

decisions include the basing of aircraft, ground equipment, facilities and maintenance repair

capability. The goal of location management is to optimize requirement flow with minimum fuel

usage. Process decisions include initial process design for fuel efficiency, process redesign for

fuel efficiency and accountability for fuel efficiency. Metrics need to be designed to drive

behaviors that increase fuel efficiency in these strategic areas.

Table 1: Aviation Industry Strategic Decision Making for Fuel Efficiency

 Supply chain fuel efficiency involves alliancing. Partnering with other firms in the

supply chain can result in significant fuel efficiency enhancements. Examples include

information technology collaboration that shares aircraft schedules and loads with cargo

distribution centers to optimize load factors. Another potential improvement area in alliancing

fuel efficiency comes from the increased load factors associated with pooling. Pooling involves

sharing requirements to optimize load factors. Gagnepain and Marin (2007) conclude that airline

alliances are able to lower prices because they result in lower costs.

Aircraft
Acquisition

Automation and
Optimization

Software
Acquisition

Ground
Equipment
Acquisition

Infrastructure
Improvements

Location
Management

Process

More Fuel
Efficient Engines

Aircraft Basing

Ligther Materials
and Components

Ground Equipment
Locations

Enhanced
Aerodynamics

Facility Locations
Process Redesign
for Fuel Efficiency

Optimal Fleet Mix
for Fuel Efficiency

Maintenance Repair
Capability

Accountability for
Fuel Efficiency

Initial Process
Design for Fuel

Efficiency

Strategic Planning

Strategic Decision Making

Strategic Investment

Route and
Schedule

Optimization for
Enterprise

Requirements at
Minimum Cost of
Fuel and Assets

Mission Handling
Equipment Fuel

Efficiency

Mission Support
Equipment Fuel

Efficiency

Strengthening a
Runway to

Increase Load
Factors

Lengthening a
Runway to

Increase Load
Factors

20

 Organizational culture is not a dynamic capability, but meets the valuable, rare,

inimitable and non-substitutable requirements of a resource based view. Barney (1986) suggests

that organizational culture may be a source for sustained competitive advantage. An

organizational culture devoted to fuel efficiency is valuable, rare, hard to imitate and not easily

substituted. Achieving a fuel efficiency focused organizational culture involves the integration

of the importance of fuel efficiency as a core ingredient to the success of the organization.

Embedding fuel efficiency into an organizational culture is difficult (Hatch, 1993).

 Schein (1984) stressed the importance of the structure of the firm and the firm’s reward

system during the development of organizational culture. The process to embed fuel efficiency

into the culture requires measuring individual contribution to fuel efficiency and then

establishing mechanisms that utilize that contribution element as an important consideration for

promotion/reward. Leadership involvement is also critical toward embedding fuel efficiency in

the organizational culture. Fuel efficiency should be incorporated into leadership

communications to employees. Organizationally, a top executive can be assigned to oversee a

firm’s overall fuel efficiency effort. A committee can also be established among top executives

to discuss strategic fuel efficiency opportunities.

 Operational fuel efficiency can be greatly enhanced by fuel efficiency strategic decision

making, supply chain fuel efficiency and an organizational culture committed to fuel efficiency.

To align all of these sources of competitive advantage together requires fuel efficiency metrics.

These metrics need to be measured, analyzed and reported to key decision makers.

Accountability for metric performance must be established in terms of both individual

promotion/reward and fuel efficiency trends needing management attention. The metrics should

21

be designed to influence positive behaviors and issues where negative behaviors can positively

impact a metric should be highlighted and widely acknowledged.

Fuel Efficiency Index

 Fuel efficiency metrics in the transportation industry are based upon several aggregate

measures of output. In the aviation industry, the Bureau of Transportation Statistics includes air

revenue ton miles and air revenue passenger miles (Lahiri et al., 2003). Internationally, revenue

ton kilometers and revenue passenger kilometers are used (Owen, 2008). Assuming an increase

in these metrics is positive then increasing revenues, distances and load factors would result in a

positive trend. The desired objective of fuel efficiency is to move the greatest quantity of cargo

and passengers at the least cost of fuel for a given distance, set of assets and unit of time.

 Ton miles and passenger miles should measure the Great Circle Distance (GCD) between

cargo and passenger onload and offload as established in Federal Regulations (Code of Federal

Regulations, 2010). Including GCD in the metric would allow the flight of more miles to save

fuel overall. Flying greater distances can save fuel. Examples include flying farther to find more

favorable winds or flying farther to obtain an Air Traffic Control routing that allows for a higher,

more fuel efficient altitude. Ton miles and passenger miles still fail to take into account fuel, so

those metrics should be divided by fuel used. The literature includes many examples where fuel

is incorporated with passenger distance and cargo weight distance (Lee et al., 2004; Hileman et

al., 2008; Owen, 2008; Rutherford and Zeinali, 2009). Ton miles per lbs of fuel consumed and

passenger miles per lbs of fuel consumed consider fuel and mass transported over a given

distance.

 Hileman et al. (2008) labeled these metrics Payload Fuel Energy Efficiency (PFEE), but

uses fuel energy consumed instead of lbs of fuel consumed. This metric excels as an aggregate

22

measure, but fails to take into account how an increasing quantity of sorties can tend to increase

the measure of efficiency. For example, if two sorties are performed exactly the same, then the

aggregate PFEE of both sorties is twice the size for the PFEE of one sortie. The reason for this is

that both variables in Hileman et al.’s metric numerator are doubled while only one term in the

denominator is doubled. This effect of increasing efficiency by increasing sorties is eliminated

by obtaining the sortie average. Including the number of sorties n in the denominator of PFEE

operationalizes the Fuel Efficiency Index (FEI) metric as seen in Equations 1 and 2.

𝐶𝑎𝑟𝑔𝑜 𝐹𝐸𝐼 =
∑ 𝑇𝑜𝑛𝑠𝑖∗𝑀𝑖𝑙𝑒𝑠(𝐺𝐶𝐷)𝑖

𝐾𝐿𝑏𝑠 𝑜𝑓 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛𝑒𝑑𝑖
𝑛
𝑖=1

𝑛
,𝑤ℎ𝑒𝑟𝑒 𝑛 = # 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑒𝑠 (1)

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝐹𝐸𝐼 =
∑ 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑖∗𝑀𝑖𝑙𝑒𝑠(𝐺𝐶𝐷)𝑖

𝐾𝐿𝑏𝑠 𝑜𝑓 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛𝑒𝑑𝑖
𝑛
𝑖=1

𝑛
,𝑤ℎ𝑒𝑟𝑒 𝑛 = # 𝑜𝑓 𝑠𝑜𝑟𝑡𝑖𝑒𝑠 (2)

The Data

 Babikian et al. (2001) demonstrated that efficiency differences between regional and

large aircraft can be affected by sortie length. As the proportion of large and small aircraft

changes over time, the overall FEI can be biased. To remove this bias, the FEI in Equations 1

and 2 can be calculated on an aircraft type basis to remove the bias of different aircraft type

ratios impacting the overall efficiency metric. To obtain a better understanding of the fuel

efficiency index, 5,144 Air Mobility Command military airlift sorties from November 2010 were

analyzed with respect to the proposed index. Only channel, contingency or special assignment

airlift mission sorties were selected. A summary of the index numbers broken down by aircraft

Mission Design Series (MDS) can be seen in Table 2.

23

Table 2: Air Mobility Command FEI by MDS November 2010

 Sorties
Great Circle

Distance (Nautical
Miles)

Cargo
(Tons)

Fuel
Consumed
(1000 lbs)

Fuel Efficiency Index:
∑𝐺𝐶𝐷∗𝐶𝑎𝑟𝑔𝑜

𝐹𝐶
𝑆𝑜𝑟𝑡𝑖𝑒𝑠

C-17A 3,110 4,471,385 54,406 220,724 327
C-5A 74 133,192 1,782 8,141 387
C-5B 251 542,520 7,494 31,936 478
C-5M 4 10,375 116 549 571

C-130E 317 64,456 861 1,661 101
C-130H 675 280,850 2,563 6,492 148
C-130J 188 145,918 831 2,587 257

KC-10A 107 186,420 289 14,955 68
KC-135R 358 494,280 459 26,663 53
KC-135T 60 74,927 49 5,265 33

Total 5,144 6,404,322 68,850 318,971 Average: 267

 Note how the larger aircraft tend to have on average better FEI scores with the C-5M

scoring highest. This trend for larger aircraft matches Babikian et al.’s results. Tanker aircraft

(KC-10 and KC-135) tend to have very low FEI scores due to the limited cargo they carry and

also due to the fact that airlift is ancillary to their primary mission of air refueling. Their overall

efficiency numbers are at the lower end of their range due to the prevalence of sorties with no

cargo. Of all the sorties observed, 22% had no cargo. Sorties at the top of the efficiency range

had FEI measuring in the thousands. Table 3 includes the descriptive statistics for all of the

FEIs.

Table 3: Descriptive Statistics for Air Mobility Command FEI November 2010

Mean FEI 267
Standard Deviation 332

Minimum 0
Maximum 5,189

Count 5,144

24

 From the descriptive statistics, note that the standard deviation is larger than the mean.

This suggests a large dispersal of the data. There are a few outliers at the top of the range that

are associated with bad data. A couple of cases included diverts back to the origin, but failed to

change the city pair. This resulted in extremely low fuel usage for a long distance resulting in a

false FEI. In the cases of diverts, it is important to record the destination as the same as the

origin. Finally, the mean is much larger than the median suggesting influence by a few outliers

at the top of the range.

Great Circle Distance

 After examining the descriptive statistics of FEI, the data was analyzed to assess the

impact of great circle distance. If greater distances lead to better FEIs, than shifting the fleet to

more long distance missions might improve the FEI measure. Increased distance tends to

decrease payload capacity. This can be seen in Breguet Range Equation 3 (Lee et al., 2004). V

is the flight speed, L/D is the lift to drag ratio, g is the gravitational acceleration constant, SFC is

specific fuel consumption and W is weight. The equation shows a tradeoff between fuel weight

and payload weight.

𝑅 =
𝑉�𝐿𝐷�

𝑔∗𝑆𝐹𝐶
∗ ln �1 + 𝑊𝑓𝑢𝑒𝑙

 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑∗ 𝑊𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒∗𝑊𝑟𝑒𝑠𝑒𝑟𝑣𝑒
� (3)

If AMC aircraft were operating at maximum payload, then as distance increases, payload

decreases counteracting the increase in FEI. When not operating at maximum payload, similar

payloads will result in a higher FEI for aircraft that move the cargo farther. To isolate the bias of

differing MDS aircraft, the comparison of distance to FEI was made for the C-17 and the C-5.

25

For the C-5, the A, B and M models were included together. The results were plotted in Figures

4 and 5.

 Figure 4: C-17 Great Circle Distance and FEI

Figure 5: C-5 Great Circle Distance and FEI

 Figure 4 shows the maximum FEI for the C-17 in red in addition to the specific sorties.

This maximum FEI was calculated using zero wind and assumes that alternate and holding fuel

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000

F
E
I

Great Circle Distance

Max FEI

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000

F
E
I

Great Circle Distance

26

is the same as reserve and contingency fuel. Varying winds and fuels explain why certain sorties

in Figure 4 are able to exceed the maximum FEI. Note the peak in max FEI in Figure 4 for the

1,000 to 2,000 NM range. Air refueling sorties were removed from Figure 4 to better highlight

the relationship between the sorties and max FEI.

Both Figure 4 and 5 show an increase in FEI for longer distance city pairs. The overall

correlation between GCD and FEI is 44%. The only method that a manager could use to

increase GCD is to overfly an intermediate location or discover longer distance city pairs to

replace city pairs currently being used. If these sorties were operating at maximum payload

before the transition, than a payload penalty would exist for going to longer distances. Yet, if the

sorties were flying with a suboptimal payload, then they could fly a longer range with the same

payload and increase FEI.

Load Factors

 To enhance the effectiveness of the FEI, it should be reported along with load factors.

The benefit of the load factor is that it is a ratio of the actual load to the optimal load. This

information provides important insight into how cargo loading efficiency influences FEI. Load

factors can have two limiting factors. These factors include weight limitations and volume

limitations. The volume limitation or cube is a matter of dimension. It is based on the surface

area of the cargo floor and the height of the cargo door. It is often measured as a ratio of pallet

positions used over pallet positions available. If a cargo compartment is cubed out (pallet

positions used equals pallet positions available) and cargo of greater density is not available

(assuming below payload maximum) then the horizontal optimal configuration was achieved. In

order to achieve optimality for the vertical, a metric should be added for the load factor of the

pallet. It should be noted that calculating pallet load factors could be complex if accuracy is a

27

primary concern. To simplify pallet load factors, a ratio of the height of the pallet to the

maximum allowable height might be preferable.

 The weight limitation is more complex. Pallets and aircraft cargo floors have a weight

limitation. The limits of these must be observed. The aircraft also has a maximum gross takeoff

weight which is dependent upon several variables. The first constraint is an airframe limit. This

airframe limit can be reduced based upon several variables. These variables include pavement

strength, runway length, altitude, temperature, obstacles and runway winds. With the maximum

gross weight for takeoff determined, cargo available equals maximum gross takeoff weight

minus operating weight minus fuel on board. The fuel on board is a calculation based on many

factors.

 The primary factor is the distance to the next fueling point. Other considerations include

icing, thunderstorms, weather at origin and destination, distance to alternate, airframe specific

fuel degrade, cargo weight, routing, altitude and winds. Due to the complexity of all of these

factors, determination of the exact maximum payload is extremely difficult and often requires

iterative algorithms. Computer flight planning software can calculate the value of payload

maximum (PMAX) and those values should be calculated and recorded for every sortie flown.

For passengers, the load factor is based on percentage of seats filled. See Equations 4 through 8

for load factors. The behaviors desired from these metrics include maximizing the pallet loads

and completely filling the aircraft.

𝑃𝑎𝑙𝑙𝑒𝑡 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝑢𝑏𝑒) = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑎𝑙𝑙𝑒𝑡 𝑉𝑜𝑙𝑢𝑚𝑒
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑎𝑙𝑙𝑒𝑡 𝑉𝑜𝑙𝑢𝑚𝑒

 𝑜𝑟 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑎𝑙𝑙𝑒𝑡 𝐻𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑎𝑙𝑙𝑒𝑡 𝐻𝑒𝑖𝑔ℎ𝑡

 (4)

𝑃𝑎𝑙𝑙𝑒𝑡 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑊𝑒𝑖𝑔ℎ𝑡) = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑎𝑙𝑙𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑎𝑙𝑙𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡

 (5)

𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝑢𝑏𝑒) = 𝑃𝑎𝑙𝑙𝑒𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑠 𝑈𝑠𝑒𝑑
𝑃𝑎𝑙𝑙𝑒𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑀𝐷𝑆 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐) (6)

28

𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑊𝑒𝑖𝑔ℎ𝑡) = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑎𝑟𝑔𝑜 𝑊𝑒𝑖𝑔ℎ𝑡
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝐹𝑙𝑖𝑔ℎ𝑡 𝑃𝑙𝑎𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

 (7)

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑆𝑒𝑎𝑡𝑠

 (8)

 Load factors for passengers in the aviation industry grew from 60 to 80% from 1990 to

2008 and load factors for commercial cargo remained flat around 60% over the same time period

(Hileman et al., 2008). To contrast against industry data, load factors for the Air Mobility

Command data set were gathered. Payload maximum was determined using Equation 9. Actual

ramp fuel was used to aid in simplification, but operationally the load factors need to be

determined before the ramp fuel is loaded. Payload maximum is not routinely used by Air

Mobility Command’s command and control staff, but its value is critical to accurate load factor

determination during planning.

𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑀𝑎𝑥 = 𝑀𝑖𝑛(𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐴𝑐𝑓𝑡 𝑀𝑎𝑥, (𝑊𝑀𝑎𝑥 𝐺𝑟𝑜𝑠𝑠 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 −𝑊𝑅𝑎𝑚𝑝 𝐹𝑢𝑒𝑙 −

𝑊𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔)) (Error! Bookmark not defined.)

 Payload maximum is dependent on Maximum Gross Takeoff Weight. For the analysis,

the Maximum Gross Takeoff Weight used was the maximum for the aircraft. Other variables

that could further reduce Maximum Gross Takeoff Weight include airfield pavement strength

limitations and departure obstacles. Their inclusion would serve to improve load factors. The

cargo load factors for Air Mobility Command can be seen in Table 4. The Air Mobility

Command cargo load factor is lower than industry by a factor of 3. This illustrates the need for

the operationalization of the load factor metric into Air Mobility Command planning, command

and control. Each sortie’s load factor needs to be highlighted when the value falls below a firm’s

29

specific threshold. Load factor feedback control systems can have a positive impact on the fuel

efficient operation of the enterprise.

Table 4: Air Mobility Command Load Factors November 2010

Maximum Gross
Takeoff Weight Empty Weight Load Factors

C-17A 585 282.5 23%
C-5A 769 380 23%
C-5B 769 380 31%
C-5M 769 380 28%

C-130E 155 90 15%
C-130H 155 90 21%
C-130J 155 90 27%

KC-10A 590 241 3%
KC-135R 322.5 119.23 3%
KC-135T 322.5 119.23 2%

Total 22%

 Strategic airlift airframes were selected from the data for more detailed analysis. To

better understand the impact of load factors on FEI, load factors were plotted against FEI for

both the C-17 and the C-5 as seen in Figures 6 and 7. In both cases, a positive correlation is seen

between increasing load factors and the FEI. Overall, there exists a 74% correlation between

load factor and FEI. This is almost twice as large as the 44% correlation with GCD. There are

several data points outside 100% load factors. These are suspected to be due to waivers that

allow for loading more cargo than Maximum Gross Takeoff Weight. One other item of note is

the increasing variance of FEI as load factors increase. This was also apparent in the analysis of

GCD.

30

Figure 6: C-17 Load Factor and FEI

Figure 7: C-5 Load Factor and FEI

0

500

1000

1500

2000

2500

0% 20% 40% 60% 80% 100% 120% 140%

F
E
I

Load Factor

0

500

1000

1500

2000

2500

0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

F
E
I

Load Factor

31

Inactive Sorties

 Aircraft need to often position to pick up cargo and deposition after delivering cargo.

This reduces load factors by driving up the number of no cargo sorties. It also reduces FEI due

to the zeroing of the numerator. Inactive sorties drive the desire to either stage aircraft out of

heavy cargo and passenger requirement locations or to select aircraft that are nearest to the cargo

and passenger requirement onload or offload locations. A metric that is proposed to handle the

efficiency of aircraft selection to meet this requirement is inactive miles per inactive sortie as

seen in Equation 10. An inactive mile is defined as a mile flown to position an aircraft at a cargo

on load location or to deposition an aircraft from a cargo offload location. An inactive sortie is a

sortie composed of inactive miles. The behavior desired is to drive aircraft staging to where the

cargo is located or to select an aircraft for a mission that is closest to the cargo on load and

offload.

𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑀𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 𝑆𝑜𝑟𝑡𝑖𝑒 = ∑ 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑀𝑖𝑙𝑒𝑠𝑖𝑛
𝑖=1

𝑛
,

 𝑤ℎ𝑒𝑟𝑒 𝑛 = # 𝑜𝑓 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑜𝑟𝑡𝑖𝑒𝑠 (10)

 The results of the inactive miles per sortie analysis on an MDS basis for Air Mobility

Command can be seen in Table 5. The tankers have to travel the longest to get their

requirements. Inactive miles appear to decrease with aircraft size after that. Although this

metric is broken down on a per MDS basis, it could be analyzed on a departure airfield basis to

discover which units have the farthest to travel for positioning and depositioning. From these

results, insights into potential staging opportunities could be an area for further research.

32

Table 5: Air Mobility Command Inactive Miles Per Sortie November 2010

 Inactive Sorties Inactive Miles Inactive Miles Per Sortie

C-17A 960 1,186,113 1,236
C-5A 33 27,453 832
C-5B 98 129,808 1,325
C-5M 2 5,188 2,594

C-130E 40 18,876 472
C-130H 49 47,441 968
C-130J 31 29,748 960

KC-10A 37 88,638 2,396
KC-135R 77 163,989 2,130
KC-135T 7 7,493 1,070

Average 1,398

Fuel

 After examination of the effects of Great Circle Distance and Load Factors on FEI, the

final variable that is part of FEI is fuel consumed. An examination of fuel consumed against FEI

was plotted in Figures 8 and 9. To aid in visibility for the C-17 plot, three outliers were

removed. The expected behavior is that as fuel consumed increases, FEI should decrease. The

opposite occurs in actuality. There are two suspected reasons for this. First, there is a 78%

correlation between GCD and fuel consumed and the FEI increase associated with increasing

GCD outweighs the additional fuel burned. Second, sorties with higher load factors burn more

fuel. A potential solution to provide greater sensitivity to fuel consumed would be to square the

fuel consumed in the denominator of the FEI equation.

33

Figure 8: C-17 Fuel Consumed and FEI

Figure 9: C-5 Fuel Consumed and FEI

0

500

1000

1500

2000

2500

0 50 100 150 200 250

F
E
I

Fuel Consumed (KLbs)

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

F
E
I

Fuel Consumed (KLbs)

34

 When extra fuel is carried on board an aircraft, the added weight of that fuel burns

additional fuel unnecessarily. Due to this cost of carrying additional fuel, it is often desired to

ensure that no more fuel is added to a mission than planned. This illustrates the need for a metric

that represents fueling accuracy as seen in Equation 11. In addition to reducing the cost to carry

fuel, it is often desired to have the aircraft fly the most fuel efficient flight profile. This is

complicated by load factors and distances involved. To remove these and other sortie specific

factors, a contrast could be made between a planned fuel burn and the actual fuel burn. To drive

this behavior, Equation 12 measures a planned over actual fuel burn ratio. The goal of the metric

is to maximize the ratio by minimizing actual fuel burn.

𝐹𝑢𝑒𝑙𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑀𝑎𝑥 �0,𝑀𝑖𝑛 �1,1 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑢𝑒𝑙 𝑙𝑜𝑎𝑑−𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑓𝑢𝑒𝑙 𝑙𝑜𝑎𝑑
𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑓𝑢𝑒𝑙 𝑙𝑜𝑎𝑑

�� (11)

𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛 𝑅𝑎𝑡𝑖𝑜 = 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑓𝑢𝑒𝑙 𝑏𝑢𝑟𝑛
𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑢𝑒𝑙 𝑏𝑢𝑟𝑛

 (12)

 Differences between planned and actual fuel burn are subject to multiple variables. Many

of these variables are outside of the pilot’s control while some can be manipulated. Variables

outside of the pilot’s control include winds different than planned, achievable altitude below

planned, icing/thunderstorms/turbulence altering routings and/or altitude and decreased engine

performance. Variables within the pilot’s control include throttle setting, not flying planned

routings and altitudes (not influenced by external constraints) and climb/descent profiles. Since

the ratio of planned fuel burn to actual fuel burn does not distinguish between aspects of fuel

burn that are within the pilot’s locus of control, the metric could be unjustly punitive. Despite

this drawback, the metric does distinguish discrepancies from planned fuel burn and drives

35

behavior to lower fuel burn. Air Mobility Command data for average fueling accuracy and

average fuel burn by aircraft can be seen in Table 6.

Table 6: Fueling Accuracy and Fuel Burn Ratio

 Average Fueling Accuracy Average Fuel Burn Ratio

C-17A 97% 1.03
C-5A 95% 0.98
C-5B 98% 0.98
C-5M 100% 1.02

C-130E 100% 1.00
C-130H 99% 1.01
C-130J 93% 1.11

KC-10A 96% 0.98
KC-135R 92% 1.00
KC-135T 97% 1.00

 From the table, note the high fueling accuracies. These high accuracies are due to the

way the planned ramp fuel is calculated. The Air Mobility Command Fuel Data Tracker will set

the planned ramp fuel equal to actual ramp fuel if the ramp fuel deviation reason was outside of

the pilot’s control. This aids in unjust attribution, but skews the data toward the high end of

accuracy. The fuel burn ratio provides little information from an aircraft perspective. It might

suggest something about the quality of the fuel planning or it could be a sign of something

cultural in that aircraft’s community. The fuel burn ratio could be more effectively used by

comparing organizational units. It could also be used to compare pilots.

Managerial Implications for City Pair Analysis

 FEI increased with GCD, load factor and fuel consumed. To get a better understanding

of the sensitivity of FEI to load factor and fuel consumed, a specific city pair was selected. This

36

enabled distance to become constant leaving cargo and fuel as the remaining variables. Dover to

Ramstein was a common city pair in the data set with 20 observations. Note that managing FEI

by city pair might be time consuming and effort should be concentrated on frequent city pairs.

C-17s were selected for the analysis to further constrain the variables by limiting aircraft type.

The results can be seen in Figures 10 and 11.

 Figure 10 shows how the amount of fuel consumed varies for a fixed distance and load

factor, while Figure 11 shows how the amount of cargo varies for a fixed distance and fuel

consumed. The Figure 10 relationship is useful for managers in that it identifies sorties that

deviate from previous observations based on fuel efficiency. The ability to identify sorties that

exceed a predetermined interval on the regression of that city pair could highlight outliers in both

fuel efficiency and fuel inefficiency. In depth analysis of those outliers in terms of root cause

could expose opportunities for greater fuel efficiency. Specific aircraft tails or aircrews might

repeatedly occur outside the interval representing the need for possible remedial action.

37

Figure 10: KDOV-ETAR C-17 Load Factors and FEI

Figure 11: KDOV-ETAR C-17 Fuel Consumed and FEI

0

200

400

600

800

1000

1200

1400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
E
I

Load Factor

0

200

400

600

800

1000

1200

120 125 130 135 140 145 150 155 160 165 170

F
E
I

KLbs of Fuel Consumed

38

 From Figure 10, note the tight scatter of points about the simple linear regression. The R2

for this regression is .82. This indicates that load factor when constricted by city pair explains

most of the variability in FEI. Figure 10 also aids in understanding that to target an FEI near

1,000 requires an 80% load factor. From Figure 11, note that the points have much greater

variance about the line. The R2
 for this regression is .45. This indicates that fuel consumed

when constricted by city pair explains only 45% of the variability in FEI. Taking a vertical slice

of Figure 10 shows load factor replicates with the variance between the data points being

explained by fuel consumed. Using a band about the regression line for a city pair in Figure 10

could highlight missions that consume too much or too little fuel contrasted against the

aggregate. Further analysis into those missions could potentially highlight fuel savings

opportunities.

Incorporating Metrics into the Aviation Industry Fuel Efficiency Model

 Application of FEI operationally can drive desired behaviors to increase load factors,

reduce inactive miles and reduce fuel usage. Reducing fuel consumption might best be

addressed through the banding method of the regression line in the Dover to Ramstein example.

FEI has value beyond application operationally. To obtain the optimal value from FEI, the

metric should be applied to all of the components of the Aviation Industry Fuel Efficiency

model. The first component of the model requiring the application of FEI is strategic decision

making. FEI should be implemented in both the strategic investment and strategic planning

components of strategic decision making,

 From a strategic investment perspective, the FEI metric can drive aircraft acquisition

requirements and allow for innovative paradigm shifts. The FEI minimum for several set

distances can be specified as the requirement. Since FEI does not include time as a variable, that

39

should be constrained to a set maximum when building the requirement to avoid solutions that

are too slow. FEI also fails to address reliability. The C-5 has superior FEI on average, but

suffers from reliability issues. This needs to be addressed when making strategic investments

such as aircraft acquisition. Larger aircraft might be superior in terms of FEI, but might suffer

mechanically due to their size and complexity. Infrastructure improvements enhancing load

factor potential such as pavement strengthening can be assessed based upon FEI impact.

Strategic airfield improvements could result in increased cargo flow and more efficient

operations. Ranking airfield improvement projects by FEI impact can be an important factor

when considering prioritization.

 Beyond strategic investment, FEI could be extremely useful in strategic planning. FEI

and inactive miles would be useful for the determination of aircraft basing and staging locations.

Those metrics would also be useful from a theory of constraints perspective by highlighting the

least efficient aircraft and mission pairings. Automatically calculating the FEI planning metric

once an aircraft was assigned to the mission and highlighting poor FEIs and inactive miles could

provide planning and aircraft allocation immediate feedback for correction. Individual planners

and aircraft allocators can be held accountable using FEI and inactive miles as performance

metrics. Beyond individuals, organizational goals can be established regarding both the FEI and

inactive miles.

 Implementation of the FEI should extend beyond the firm when the FEI is dependent

upon other firms in the supply chain. Suppliers performing functions such as warehousing and

distribution that are tied to air mobility should be provided information on their FEI impact. In

addition, strategic partnering should be encouraged to enhance load factors. Alliances should be

examined that offer the greatest potential to increase the FEI. Shared investments on information

40

technology, automated identification and tracking and cargo distribution equipment might offer

FEI improvements that justify the acquisition. Suppliers need to be properly rewarded for their

investments to enhance FEI.

 Strategic decision making and supply chain fuel efficiency can be greatly improved

through the use of the FEI. Yet, there are areas of improvement in FEI that can only be achieved

by those operational workers executing the process. To reap those benefits, FEI needs to be

embedded into organizational culture. Attempting to embed a metric into organizational culture

and simultaneously using the metric as a tool for accountability is difficult. The problem is that

individuals tend to rebel against punitive metrics. For acceptance, it is preferred to use the

metric in a positive role until it becomes accepted as part of the organization. It is important to

include the metric when measuring operations at every level. Obtaining leadership support for

the metric is essential. FEI needs to be presented at senior level meetings and included in

organizational goals. Finally, FEI should be part of the reward structure for promotion for

factors within the individual’s control. This could include individual awards for sustained high

FEI performance to highlighting the metric during promotion discussions.

Findings and Conclusion

 The Aviation Industry Fuel Efficiency model presents a framework for transforming fuel

efficiency into a sustained competitive advantage. This is achieved through the use of the

dynamic capabilities of strategic decision making and alliancing. In addition to those dynamic

capabilities, the model recommends ingraining fuel efficiency into the organizational culture. To

assist the manager in implementing the model, the FEI was introduced. The FEI drives desired

behaviors to increase load factors, decrease inactive miles and reduce fuel consumed. Other

metrics were suggested to further assist the manager in improving fuel efficiency behaviors to

41

include load factors, inactive miles per sortie, fueling accuracy and fuel burn ratio. It is

important to measure load factors from both a weight and cube perspective, to obtain a better

understanding of the efficiency of operations.

 Measuring FEI operationally can drive behaviors toward increased fuel efficiency, but

application of the FEI to the model is where a firm can leverage much greater fuel efficiency

benefits. Extending the FEI to strategic decision making, supply chain partners and the

organizational culture will allow the firm’s fuel efficiency focused resources to not be easily

imitated. There are certain risks associated with greater fuel efficiency integration within the

supply chain and strategic fuel efficiency investments. These risks need to be thoroughly

analyzed. There are also risks to not integrating or not investing in an environment of rising fuel

prices. Following a fuel efficiency strategy will make the firm and the firm’s supply chain less

susceptible to rising fuel prices. A fuel efficiency strategy will also increase a firm’s ability to

compete on price.

 The FEI ties together all of the components of the model. It enables individual,

organizational, corporate, supply chain and industry goals to align. This common sense of

purpose can only be achieved if the metric is valued equally. FEI could support aircraft

manufacturers, distribution centers, command information systems, planning systems and

allocation. Much as a low cost retailer is less susceptible to economic downturns, a fuel efficient

firm in the aviation industry is less susceptible to fuel price increases. A fuel efficiency strategy

is a risk reduction strategy with opportunities for expert practitioners to obtain a sustained

competitive advantage.

42

Distance Value Model for Nodal Reduction of the Strategic Airlift Problem

Introduction

 Global airlift operations require an analysis of an extremely large set of airfields. The

problem of selecting the optimal airfields from this set to service a customer airlift requirement is

an essential component of the Strategic Airlift Problem (SAP). Mihram and Nolan (1969) define

the SAP as “a set of time-phased movement requirements for troops, vehicles and dry cargo,

each constituting a demand on airlift resources.” The problem of optimally selecting the set of

time-phased movements of the SAP is a class of routing and scheduling problems commonly

referred to in the literature as the Vehicle Routing Problem (VRP). The most basic VRP contains

a single depot node and several other nodes denoting customer delivery locations. These

locations are connected by edges (arcs) that represent the minimum cost path between nodes.

The goal of the VRP is to find a set of routes from the depot to the customers that minimizes the

total cost to meet the customers’ demand. The edge cost can be calculated in many ways but

most frequently it is simply the minimum distance path between nodes, see for example Bell and

McMullen (2004), Longo et al. (2006), Pisinger and Ropke (2007), Chang (2008), Ai and

Kachitvichyanukul (2009) and Nagata et al. (2010).

 Using the minimum distance for an aircraft flight between two airfields can be

problematic. If the edge distance is large enough, then payload is sacrificed for the additional

fuel needed. To increase the amount of the payload, an intermediate stop, called an en route

stop, can be made. Lambert (2007) defined the SAP such that given a set of materiel and

personnel requirements and their associated on-load and off-load locations, specific aircraft will

be assigned to load those requirements and transport them to their off-load locations. Aircraft

can choose to fly directly from the requirement on-load to off-load locations, stop at an en route

43

location for fueling, or use an en route cargo location for trans-load operations. That routing

decision on whether to go direct, stop for gas, or trans-load is complicated by the interaction

between fuel, payload, and distance.

 Thus a sub-problem emerges with respect to airlift. Given a set of airfields between

requirement pickup and delivery, what is the optimal path to reach delivery? In this sub-

problem, nodes are the airfields that serve as en route stops between the pickup and delivery

locations. Edges are defined as the sorties (flights, or trips) between airfields and paths are the

set of edges from pickup to delivery. While most research on the VRP focuses on minimizing

the total cost of transportation given the edge costs, this research focuses on how to build the set

of edges for the VRP. The further use of the terms nodes, edges and paths will refer to this sub-

problem. Bodin (1990) reflected on 20 years of routing and scheduling problems and detailed

several constraints that tend to complicate the problem including multiple vehicle types,

vehicle/location dependency, time windows and route length. All of these problems also exist in

our sub-problem of edge determination.

 Therefore, the goal of this research is to decrease the time to select the optimal aircraft

path for a given segment of the VRP from pick up to delivery. The selection of this optimal path

for a given requirement is a necessary condition to establish the capacity constraint of the

capacitated vehicle routing problem. The method chosen to obtain optimality faster is nodal

reduction. We seek to eliminate nodes that are of such low value that they would not be part of

the optimal solution. Can airfield nodes be removed through value modeling without eliminating

optimal or highly desirable solutions and what improvement in speed can be obtained through

this nodal reduction?

44

 To answer these questions, we begin by developing basic assumptions. The first

assumption is that any en route airfield selected is closer to the origin and destination than the

origin-destination distance. This assumption is captured in Equations 13 and 14 and can be seen

in eye shape of Figure 12. Miravite and Schlegel (2006) call this eye shape the “Lens.” This

assumption provides for unidirectional aircraft flow and reduces computation time from O(en!) to

O(2n). We will later show that there is one potential flaw to this basic assumption due to airfield

pavement strength that needs to be addressed and offer a potential solution.

𝛿𝑂𝐸 < 𝛿𝑂𝐷 (13)
𝛿𝐸𝐷 < 𝛿𝑂𝐷 (14)

 Where:

 δOE = Origin-En route Distance
 δOD = Origin-Destination Distance
 δED = En route-Destination Distance

Figure 12: Dover airfield to Ramstein airfield “Lens” (GCmapper)

45

 When comparing an origin-destination flight to an origin-en route stop-destination flight,

is there some minimum distance below which it is more valuable to fly direct to the destination?

If such a minimum distance exists, then perhaps that distance could be removed from the “Lens”

as established by Equations 15 and 16. This would reduce the number of nodes for path analysis

without negatively impacting solution quality. This distance will be referred to as the minimum-

cutoff distance.

𝛿𝑂𝐸 < 𝛿𝑂𝐷 − 𝛾 (15)
𝛿𝐸𝐷 < 𝛿𝑂𝐷 − 𝛾 (16)

 Where γ = Minimum-Cutoff Distance

 The inclusion of a minimum-cutoff distance has two impacts. First, it compresses the eye

shape formed by the original constraint. Second, it limits computation time by setting a limit to

the maximum number of en route stops. Figure 13 illustrates the impact of the application of the

minimum-cutoff distance. The example shows a requirement from Dover airfield in Delaware to

Ramstein airfield in Germany on a Google Maps flat earth projection. The color bands are

distance bands from the destination. By including an arbitrary minimum-cutoff distance of 700

nautical miles (NMs), the number of potential airfields is reduced from 812 to 50.

 No Minimum Cutoff Distance 700 NM Minimum Cutoff Distance

Figure 13: Impact of minimum cutoff distance on nodal reduction

46

 This minimum-cutoff distance affects routing algorithms not only by limiting the number

of nodes, but also by limiting the number of potential stops. To highlight the impact of

minimum-cutoff distance using simple enumeration, the maximum number of legs in Figure 13

is reduced from 812 to 4 and the number of routing alternatives is reduced from 2812 to 241. This

example suggests that a minimum-cutoff distance could have potential value for routing analysis.

Although enumeration was used, any solution technique with a computation time based on the

number of nodes would benefit from this research. For example, both Karmarkar’s (1984)

algorithm for linear programming, O(n3.5), and Dijkstra’s (1959) algorithm for shortest path,

O(n2), would benefit from the nodal reduction methodology offered by this research.

 To calculate this minimum-cutoff distance, a model needs to be established that

associates aircraft flight distance with objective measures that the decision maker determines to

be of value. This model was created using a multi-objective decision analysis technique similar

to Brooks and Kirkwood (1988). This technique was based off of the value functions of Dyer

and Sarin (1979). Jackson et al. (1996) attempted to apply a similar technique using a value

focused thinking approach to airlift and included payload weight, payload volume, range,

response and multi-role as measures of airlift value. These measures were given distinct values

to contrast selected program alternatives. Reiman et al. (2011) found several airlift metrics to be

of value including a Fuel Efficiency Index and load factors by weight and volume. It is the

original contribution of this research to propose an airlift material distance value model to reduce

path analysis computation time.

Airlift Distance Value Model

 Value focused thinking requires alternatives to compare. Keeney (1994) states,

“alternatives are relevant only because they are a means to achieve values.” The means to

47

achieve values in our value model are the distances flown between airfields. The distances

selected for the alternatives are based on the Vincenty elliptical earth distance (Vincenty, 1975).

These distances are selected in 100 NM increments for simplicity. All measures selected for the

value model are objectively determined from the alternative distance. These measures are

divided into two categories; effectiveness and efficiency. Effectiveness includes payload

movement and safety. Payload movement is a measure of the weight of material moved in tons

multiplied by the distance moved over a given day. Safety is a measure of the circadian rhythm

shift for the aircrew and indicates the hours of deviation from a 24 hour takeoff to next day

takeoff time. Efficiency is concerned with cycle completion and fuel efficiency. Cycle

completion is the ability to airlift material to a trans-load point and return to the originating

airfield. Fuel efficiency is the ratio of the weight of material airlifted in tons multiplied by the

distance moved in a day over the amount of fuel consumed to achieve that material movement.

Figure 14 details the planning distance value hierarchy.

Figure 14: Strategic airlift problem planning distance value hierarchy

Distance

Effectiveness

Payload
Movement

Ton-Miles Per Day

Circadian
Shift

Hours Circadian
Shift

Efficiency

Cycle
Complete

Cycle Complete

Fuel
Efficiency

Ton-Miles Per Klbs
Fuel Consumed Per

Day

48

Payload Movement

 Payload movement is an important measure of airlift effectiveness. The lack of payload

movement in the 1991 Persian Gulf War resulted in the August 18, 1990 activation of the Civil

Reserve Air Fleet (CRAF) (Thomchick, 1993). As Lewis (1998) points out, the civilian CRAF

participants are in business to make money and if the business arrangement costs them money,

then they would likely opt out of the CRAF program. Decreasing the negative impacts to CRAF

partners and the economy during a major CRAF activation requires increasing military payload

movement capability. Ton-miles was selected to measure this payload movement. Similar

metrics for measuring payload movement are used by Lahiri et al. (2003), Owen (2008), and

Hellermann et al. (2013). The distance in the ton-miles metric will be based on the Vincenty

elliptical earth distance between on-load and off-load per Federal Code (CFR, 2010).

 The amount of cargo flown a given distance is dependent upon many factors such as

pavement strength, runway length, special departure procedure climb-out limitations, weather,

flight altitude and winds. The variables that are based on environmental or airfield specific

factors assume maximum cargo movement so as to be node agnostic. Table 1 provides values

chosen for the key parameters in the payload calculation for three airlift aircraft. All weights in

the table are measured in thousands of pounds (Klbs). A particular desired cruise altitude can be

selected by the decision maker. We chose optimal cruise for max gross takeoff weight for our

analysis.

49

Table 7: Aircraft-Specific Payload Movement Assumptions

 C-5B C-17A C-130J References
Operating Weight 380 282.5 78 TO 1MDS-1

Max Gross Takeoff Weight 769 585 155 TO 1MDS-1
Fuel Capacity 347 241.36 62 TO 1MDS-1

Aircraft Max Payload 270 170.9 53 TO 1MDS-1
Reserve Fuel 23.45 21.44 4 AFI 11-2MDS V3
Alternate Fuel 23.45 21.44 4 AFI 11-2MDS V3
Holding Fuel 17.59 16.08 0 AFI 11-2MDS V3

Start Taxi Takeoff Fuel 3 4.5 0.67 TO 1MDS-1-1
Approach Fuel 7 2.67 0.7 TO 1MDS-1-1

 To determine ton-miles, the maximum payload for a sortie over a given distance must be

calculated. Sortie maximum payload weight is calculated according to Equation 17. Aircraft

maximum payload weight, maximum gross takeoff weight and operating weight are assumed to

be fixed. The weight of the ramp fuel is dependent upon the distance flown and payload weight

as seen in Equation 18 (Yamani et al., 1990). Reserve, contingency, alternate and holding fuels

are safety fuels that are not planned to be consumed. Start, taxi, takeoff and approach fuel are

often planned to be the same for every sortie. Climb and descent fuel are based on planned

cruise altitude and the aircraft gross weight at the start of takeoff and descent.

𝜔𝑝𝑚𝑎𝑥 = 𝑀𝑖𝑛(𝜔𝑎𝑝𝑚𝑎𝑥, (𝜔𝑚𝑔𝑡 − 𝜔𝑟𝑓 − 𝜔𝑜𝑝)) (17)

𝜔𝑟𝑓 = 𝜔𝑓𝑠𝑡𝑡𝑜 + 𝜔𝑓𝑐 + 𝜔𝑓𝑓 + 𝜔𝑓𝑑 + 𝜔𝑓𝑎𝑝𝑝 + 𝜔𝑓𝑟𝑐 + 𝜔𝑓𝑎ℎ (18)

 Where (All weights in Klbs):

 ωpmax = Sortie Maximum Payload Weight
 ωapmax = Aircraft Maximum Payload Weight
 ωmgt = Maximum Gross Takeoff Weight
 ωrf = Ramp Fuel Weight
 ωop = Operating Weight
 ω fstto = Start, Taxi & Takeoff Fuel Weight

ω fc = Climb Fuel Weight
ω ff = Cruise Fuel Weight
ω fd = Descent Fuel Weight
ω fapp = Approach Fuel Weight
ω frc = Reserve/Contingency Fuel Weight
ω fah = Alternate/Holding Fuel Weight

50

 To determine the climb, cruise and descent fuels, regressions were performed on flight

data from aircraft performance manuals. The climb regression equation is Equation 19 and the β

parameters for Equation 19 are shown in Table 8. The lowest adjusted R2 for any of the climb

regressions was 0.9823. The descent regression equation is Equation 20 and the β parameters for

Equation 20 are shown in Table 9. The lowest adjusted R2 for any of the descent regressions was

0.9371.

𝜑𝐶 = 𝛽0 + 𝛽1𝛼 + 𝛽2𝛼2 + 𝛽3𝛼3 + 𝛽4𝜔 + 𝛽5𝜔 2 + 𝛽6𝜔 3 + 10−6𝛽7𝛼2𝜔 3 + 10−6𝛽8𝛼2𝜔 3 (19)

 Where:

 𝜑𝐶 = Time to Climb in minutes, Fuel to Climb in Klbs or Distance to Climb in NMs
 𝛼R = Altitude in Thousands of Feet
 𝜔 = Aircraft Gross Weight in Klbs at Climb Start

Table 8: Climb regression terms

C-5 Climb φC C-17 Climb φC C-130 Climb φC

Time Fuel Dist Time Fuel Dist Time Fuel Dist
β₀ -9.2979 -3.0115 -44.558 -10.199 -4.7054 -51.504 -9.1135 -1.0670 -30.656
β₁ 0.5454 0.3192 2.3817 0.5155 0.2869 2.0961 0.7454 0.0669 3.1655
β₂ -0.0197 -0.0082 -0.0861 -0.0136 -0.0070 -0.0282 -0.0313 -0.0022 -0.1600
β₃ 0.0003 9.5E-05 0.0017 0.0002 7.1E-05 0.0003 0.0005 3.0E-05 0.0026
β₄ 0.0451 0.0164 0.2454 0.0607 0.0267 0.3363 0.1654 0.0218 0.5290
β₅ -8.1E-05 -3.3E-05 -0.0005 -0.0001 -5.9E-05 -0.0008 -0.0014 -0.0002 -0.0050
β₆ 4.9E-08 2.2E-08 2.9E-07 1.1E-07 4.8E-08 6.9E-07 4.2E-06 5.2E-07 1.7E-05
β₇ 3.2E-05 3.7E-05 0.0001 8.0E-05 6.7E-05 0.0003 -0.0014 0.0003 -0.0107
β₈ 1.4E-06 7.1E-08 1.1E-05 1.5E-06 -2.1E-07 1.7E-05 0.0003 1.3E-05 0.0014

𝜑𝐷 = 𝛽0 + 𝛽1𝜔+ 𝛽2𝜔2 + 𝛽3𝛼 + 𝛽4𝛼𝜔 (20)

 Where:

 𝜑𝐷 = Time to Descend in minutes, Fuel to Descend in Klbs or
 Distance to Descend in NMs

 𝜔 = Aircraft Gross Weight in Klbs at Descent Start
 𝛼R = Altitude in Thousands of Feet

51

Table 9: Descent regression terms

C-5 Descent 𝜑𝐷 C-17 Descent 𝜑𝐷 C-130 Descent 𝜑𝐷

Time Fuel Dist Time Fuel Dist Time Fuel Dist
β₀ -4.1137 -1.9673 -19.895 0.7301 0.2574 -16.382 -2.9838 -0.0513 -22.075
β₁ 0.0186 0.0128 0.0767 0.0143 0.0005 0.1278 -0.0450 -0.0012 -0.0813
β₂ 1.83E-5 1.34E-5 7.27E-5 -2.1E-5 -8.5E-7 -1.7E-4 0.0005 1.38E-5 0.0016
β₃ 0.2282 0.1254 1.3771 0.2042 0.0108 1.3919 1.4471 0.0367 4.4627
β₄ 0.0006 0.0004 0.0026 0.0006 3.2E-5 0.0036 -0.0056 -0.0002 -0.0143

 The derivation of cruise fuel is similar to the technique used by Yamani et al. (1990).

Yamani’s linear regression of the specific range charts held altitude constant at 31,000 feet. To

allow for more flexibility in altitude selection, we computed a new regression that allows both

aircraft gross weight and altitude to be independent variables. The regression equation for

specific range is in Equation 21. Table 10 shows the β terms for each aircraft type. The lowest

adjusted R2 for any of the specific range regressions was 0.9914.

𝜃 = 𝛽0 + 𝛽1𝛼 + 𝛽2𝛼2 + 𝛽3𝜔+ 𝛽4𝜔2 + 𝛽5𝛼𝜔 (21)

 Where:

 𝜃 = Specific Range in NMs per Klbs
 𝛼R = Altitude in Thousands of Feet
 𝜔 = Aircraft Gross Weight in Klbs

Table 10: Specific range regression terms

 C-5 C-17 C-130
β₀ 24.538 31.735 58.829
β₁ 0.5511 0.9897 3.5292
β₂ 0.0002 -0.0043 -0.0098
β₃ -0.0318 -0.0642 -0.2384
β₄ 1.9E-05 5.8E-05 0.0010
β₅ -0.0005 -0.0011 -0.0155

52

 Given the specific range regression equation, the distance flown in NMs for a given

altitude and gross weight can be determined by integrating Equation 21 with respect to the

change in fuel consumed over the interval from zero to the total fuel consumed as shown in

Equation 22. After integrating and solving for cruise fuel, the resulting equation is as shown in

Equation 23.

𝛿 = ∫ (𝛽0 + 𝛽1𝛼 + 𝛽2𝛼2 + 𝛽3𝜔 + 𝛽4𝜔2 + 𝛽5𝛼𝜔)ω𝑓𝑓
0 𝑑𝑓 (22)

ω𝑓𝑓 = − 𝐵
3𝐴
− 1

3𝐴
�1
2
�2𝐵3 − 9𝐴𝐵𝐶 + 27𝐴2𝐷 + �(2𝐵3 − 9𝐴𝐵𝐶 + 27𝐴2𝐷)2 − 4(𝐵2 − 3𝐴𝐶)3�

3

− 1
3𝐴
�1
2
�2𝐵3 − 9𝐴𝐵𝐶 + 27𝐴2𝐷 − �(2𝐵3 − 9𝐴𝐵𝐶 + 27𝐴2𝐷)2 − 4(𝐵2 − 3𝐴𝐶)3�

3
 (23)

 Where (All weights in Klbs):

 A = 𝛽4
3

 B = �𝛽3
2

+ 𝛽4�ω𝑜𝑝 + ω𝑓𝑟𝑐 + ω𝑓𝑎ℎ + ω𝑝� + 𝛽5
2
𝛼�

 C = 𝛽0 + 𝛽1𝛼 + 𝛽2𝛼2 + 𝛽3�ω𝑜𝑝 + ω𝑓𝑟𝑐 + ω𝑓𝑎ℎ + ω𝑝� +
 𝛽4�ω𝑜𝑝 + ω𝑓𝑟𝑐 + ω𝑓𝑎ℎ + ω𝑝�

2
+ 𝛽5𝛼�ω𝑜𝑝 + ω𝑓𝑟𝑐 + ω𝑓𝑎ℎ + ω𝑝�

 D = −𝛿
 𝛿 = Distance in NMs
 𝛼R = Altitude in Thousands of Feet
 𝜔 = Aircraft Gross Weight

= ωop + ωfrc + ωfah + ωp + f
 ωop = Operating Weight
 ωfrc = Reserve/Contingency Fuel Weight
 ωfah = Alternate/Holding Fuel Weight
 ωp = Payload Weight
 f = Fuel Consumed
 ωff = Cruise Fuel Weight

 The cruise fuel weight from Equation 23 is dependent upon the payload weight and the

distance flown. To determine the maximum payload weight for a given distance, an iterative

algorithm was utilized. The algorithm determines the ramp fuel using a given distance and zero

payload. Using that ramp fuel, a new maximum payload is calculated according to Equation 17.

53

Using that payload a new ramp fuel is calculated. The process is iterated until the difference

between the ramp fuel and the ramp fuel from the previous iteration falls below some threshold.

 Using this method a maximum payload range curve can be created as shown in Figure 15.

The first knee in the graph identifies the point at which payload is swapped for fuel. The

primary measure of effectiveness, ton-miles, therefore rapidly increases before this point. The

second knee in the graph is where payload is swapped for range and the fuel tanks are full. The

effect of breaking up a flight distance into two segments is also apparent from the graph. For

example, a C-17 travelling 4,000 NM can carry 64 Klbs of cargo, but segmenting that into two

2,000 NM sorties more than doubles cargo capacity to 143 Klbs. From a nodal reduction

perspective, payload does not increase by adding an en route location when the distance is less

than 700, 1,300 and 600 NM for the C-5, C-17 and C-130 respectively.

Figure 15: Maximum payload vs distance flown

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000

C-17
Max

Payload
(Klbs)

Distance (NM)

54

 To be able to determine the ton-mile per day capability over a given distance, it is

important to understand the number of sorties that can be accomplished over a flight crew’s

allowable flying time. The number of sorties is calculated using Equation 24. The number of

sorties assumes that if an aircraft and aircrew were capable of flying an additional sortie, then

they would fly that sortie. To calculate the number of sorties it is necessary to calculate the time

of flight for a given distance. The airspeed flown to obtain the specific range of Equation 21 is

based off of regression Equation 25 for Mach airspeed, regression Equation 26 for true airspeed

and the regression terms of Table 11. The lowest adjusted R2 for any of the airspeed regressions

was 0.9743.

𝜂 = 𝐹𝑙𝑜𝑜𝑟 �𝜏𝑎𝑙𝑙−𝜏𝑠𝑡𝑜
𝜏𝑓+𝜏𝑔

� + �
1, 𝜏𝑓 ≤ 𝜏𝑎𝑙𝑙 − 𝜏𝑠𝑡𝑜 − 𝐹𝑙𝑜𝑜𝑟 �𝜏𝑎𝑙𝑙−𝜏𝑠𝑡𝑜

𝜏𝑓+𝜏𝑔
� �𝜏𝑓 + 𝜏𝑔�

 0, 𝜏𝑓 > 𝜏𝑎𝑙𝑙 − 𝜏𝑠𝑡𝑜 − 𝐹𝑙𝑜𝑜𝑟 �𝜏𝑎𝑙𝑙−𝜏𝑠𝑡𝑜
𝜏𝑓+𝜏𝑔

� �𝜏𝑓 + 𝜏𝑔�
� (24)

𝜓 = 𝛽0 + 𝛽1𝛼+ 𝛽2𝜔 (25)

𝜌 = 𝛽0 + 𝛽1𝛼+ 𝛽2𝜓 + 𝛽3𝛼𝜓 (26)

 Where:

 𝜂 = Number of Sorties
 τall = Crew Show to Final Landing Time in Hours (16)
 τsto = Crew Show at Airfield to Takeoff Time in Hours
 (C-5: 4.25, C-17: 2.75, C-130: 2.25)
 τg = Ground Time in Hours (C-5: 4.25, C-17: 3.25, C-130: 2.25)
 τf = Takeoff-Landing Flight Time in Hours
 = δ / ρ
 𝛿 = Distance in NMs
 ρ = Flight True Air Speed in NMs Per Hour
 𝜓 = Mach Airspeed
 𝛼R = Altitude in Thousands of Feet
 𝜔 = Gross Weight of Aircraft in Klbs (Half of fuel consumed)

55

Table 11: Mach and True airspeed regression terms

ψ ρ

C-5 C-17 C-130
β₀ 0.1683 0.2463 0.2209 0.7400
β₁ 0.0101 0.0091 0.0055 -0.1302
β₂ 0.0004 0.0004 0.0010 661.13
β₃ -2.2880

 Ton-miles per day is based on the maximum payload from Equation 17 and the number

of sorties from Equation 24. Two issues arise during the calculation of ton-miles. First,

comparing the ton-mile outputs of an aircraft that has flown to the destination to another aircraft

that has flown to the destination and back over the regulation mandated maximum flight time is

misleading. Both outputs would be the same over one flight period, but combining the outputs

over two flight periods would show a distinct doubling of output for the aircraft that can proceed

to destination and return. To address this situation, both ton-mile outputs are calculated over two

flight periods and then divided by two.

 The second issue is that there is an output benefit to finishing the mission before the

regulation maximum flight period is reached. This output benefit is dependent on airfield

operating hours. To simplify analysis, we assume that airfield operating hours are not a limiting

factor. To address the second issue, an adjustment is made that multiplies the output by the ratio

of the number of hours in one day to the number of hours from the initial takeoff to the next

possible takeoff after the crew has been able to rest. The calculation for the time from takeoff to

next day takeoff is shown in Equation 27. Equation 28 shows the calculation of the ton-mile per

day metric with both adjustments.

τ𝑡𝑜𝑡𝑜 = τ𝑓𝜂 + τ𝑔(𝜂 − 1) + τ𝑐𝑟𝑡𝑜 (27)

56

𝜇𝑡𝑚𝑝𝑑 = 6𝜔𝑝𝑚𝑎𝑥𝛿𝜂
τ𝑡𝑜𝑡𝑜

 (28)

 Where:

 τtoto = Takeoff to Next Takeoff after Crew Rest Time in Hours
 τf = Takeoff-Landing Flight Time in Hours
 𝜂 = Number of Sorties
 τg = Ground Time in Hours
 τcrto = Aircrew Entering Crew Rest to Takeoff Time in Hours
 (C-5: 17, C-17: 16.5, C-130: 16)
 μtmpd = Ton-Miles Per Day
 ωpmax = Sortie Maximum Payload Weight in Klbs
 δ = Distance in NMs
 τtoto = Takeoff to Next Takeoff after Crew Rest Time in Hours

 Value focused thinking theory uses single dimensional value functions to translate

preferentially independent measures to a common scale of zero to one. The value functions for

this analysis were modeled linearly with maximum values representing the maximum possible

for the respective aircraft type. The value function for the ton mile metric is shown in Equation

29.

𝜐𝑡𝑚𝑝𝑑 = �
𝜇𝑡𝑚𝑝𝑑

𝜇𝑡𝑚𝑝𝑑 𝑚𝑎𝑥
, 𝜇𝑡𝑚𝑝𝑑 ≤ 𝜇𝑡𝑚𝑝𝑑 𝑚𝑎𝑥

 1, 𝜇𝑡𝑚𝑝𝑑 > 𝜇𝑡𝑚𝑝𝑑 𝑚𝑎𝑥
� (29)

 Where:

 υtmpd = Value of Ton-Miles Per Day on Scale from Zero to One
 μtmpd = Ton-Miles Per Day
 μtmpd max = Maximum Ton-Miles Per Day
 (C-5: 130,630, C-17: 118,400, C-130: 34,860)

Cycle Complete

 A cycle is defined as “an aircraft movement through a route from an origin, or Aerial Port

of Embarkation (APOE), through en routes where the aircraft may receive additional cargo,

passengers, fuel, minor maintenance, and a different crew, to its destination, or Aerial Port of

57

Debarkation (APOD), where it is unloaded and returns to its origin” (Watson, 2003). Cycle

completion refers to the ability of an aircraft to depart and return to its original location.

Assuming that the departure location is a staging location where aircrews, aircraft maintenance

and mission handling equipment infrastructure are available, then there is potential value to the

decision maker for the aircraft to depart and return to the starting location. If aircrews are able to

reside at their dwellings then organizations can save on lodging expenses and reduce aircrew-

family disruption. In addition, additional aircraft could be used in case of maintenance issues.

Since fewer inputs are required to achieve a greater output if a cycle is complete, cycle

completion is viewed as a measure of efficiency.

 A critical assumption of the value of cycle complete is that the aircraft will trans-load

cargo at the en route location. If trans-load operations are not planned, then the decision maker

should weight cycle complete zero. If trans-load operations are planned, then proper personnel

and mission handling equipment must be available at the trans-load airfield. Murphy’s et al.

(2008) survey of Air Cargo companies ranks equipment availability at trans-load locations as the

top concern. To determine whether an aircraft is cycle complete depends upon the flight distance

involved and the regulation maximum aircrew flying hours. The Federal Aviation

Administration limits flight duty to 16 hours per 24 hour period (FAA, 1996). We calculate

cycle completion based on the number of sorties in Equation 24. If the number is even then the

value for cycle complete is one, else the value is zero.

Fuel Efficiency

 Utilizing the ton-miles per day from Equation 28 and dividing by the total fuel consumed

from Equation 30 adjusted for fuel consumed per day will result in the ton-miles per Klbs of fuel

consumed metric of Equation 31. This ratio of payload movement output to fuel consumption

58

input is a measure of efficiency. Improving this ratio is of potential value to the decision maker,

since it results in both a cost reduction for a given level of output and a smaller logistics

footprint. Equation 30 is based off the underlying assumption that the aircraft will airlift

maximum payload on all sorties. This assumption simplifies the analysis. The value function

for this metric is modeled similar to the ton-mile per day metric with maximum values

representing the maximum possible for the respective aircraft type. The value function for the

ton-mile per Klbs of fuel consumed per day metric is shown in Equation 32.

 𝜔𝑓𝑐𝑜𝑛𝑠 = 𝜂�𝜔𝑠𝑡𝑡𝑜 + 𝜔𝑓𝑐 + 𝜔𝑓𝑓 + 𝜔𝑓𝑑 + 𝜔𝑓𝑎𝑝𝑝� (30)

𝜇𝑡𝑚𝑝𝑘𝑝𝑑 = 𝜇𝑡𝑚𝑝𝑑τ𝑡𝑜𝑡𝑜
24𝜔𝑓𝑐𝑜𝑛𝑠

 (31)

𝜐𝑡𝑚𝑝𝑘𝑝𝑑 = �
𝜇𝑡𝑚𝑝𝑘𝑝𝑑

𝜇𝑡𝑚𝑝𝑘𝑝𝑑 𝑚𝑎𝑥
, 𝜇𝑡𝑚𝑝𝑘𝑝𝑑 ≤ 𝜇𝑡𝑚𝑝𝑘𝑝𝑑 𝑚𝑎𝑥

 1, 𝜇𝑡𝑚𝑝𝑘𝑝𝑑 > 𝜇𝑡𝑚𝑝𝑘𝑝𝑑 𝑚𝑎𝑥
� (32)

 Where (All weights in Klbs):

 ωfcons = Total Fuel Consumed During Sortie
 η = Number of Sorties
 ωfstto = Start, Taxi and Takeoff Fuel Weight
 ωfc = Climb Fuel Weight
 ωff = Cruise Fuel Weight
 ωfd = Descent Fuel Weight
 ωfapp = Approach Fuel Weight
 μtmpkpd = Ton-Miles Per Klbs of Fuel Consumed Per Day
 τtoto = Takeoff to Next Takeoff after Crew Rest Time in Hours
 υtmpkpd = Value of Ton-Miles Per Klbs of Fuel Consumed Per Day
 μtmpkpd max = Maximum Ton-Miles Per Klbs Per Day
 (C-5: 747, C-17: 798, C-130: 865)

Circadian Rhythm

 Circadian rhythm is a human factor consideration. Aircrew fatigue is negatively

impacted by time shifting operations from the current circadian rhythm of the aircrew (Samm

and Perelli, 1982). Crum and Morrow (2002) conclude that fatigue can be reduced by providing

the opportunity to sleep during normal sleeping hours. Increasing aircrew fatigue can negatively

59

impact safety of a flight and increase risk. Jackson et al. (1999) highlighted risk as an important

factor when selecting among alternatives in their VFT model. Regulations are established that

address crew fatigue issues. These regulations limit the maximum flight duration for a given

crew complement (USAF, 2011). They address fatigue from flight duration, but do not address

the negative impacts of cascading circadian rhythm. Selection of en route locations for trans-

load operations can alter circadian rhythm cycles for enhanced safety. Keeping a stable

circadian rhythm also has ancillary benefits of greater aircrew utilization, more stable planning

and routine operations.

 Circadian rhythm is measured from the amount of time that the aircrew’s circadian clock

gets shifted. If the time from initial takeoff to next day’s takeoff is less than or equal to 24 hours,

then the optimal value of one will be received. As the time shifts, value decreases until the time

from initial takeoff to next day’s takeoff equals the allowable flight period plus crew rest. The

time for circadian shift is calculated by subtracting twenty four hours from the time from initial

takeoff to next takeoff after crew rest as seen in Equation 33. This time from initial takeoff to

next day takeoff is the same as calculated in Equation 27. The value function for the circadian

shift time is linear over the range of zero to the maximum possible for the respective aircraft type

as shown in Equation 34.

𝜇𝑐𝑠 = 𝜏𝑡𝑜𝑡𝑜 − 24 (33)

𝜐𝑐𝑠 = �
𝜇𝑐𝑠 𝑚𝑎𝑥−𝜇𝑐𝑠
𝜇𝑐𝑠 𝑚𝑎𝑥

, 𝜇𝑐𝑠 > 0
 1, 𝜇𝑐𝑠 ≤ 0

� (34)

 Where:

 μcs = Circadian Shift in Hours
 τtoto = Takeoff to Next Takeoff after Crew Rest Time in Hours
 υcs = Value of Circadian Shift on Scale from Zero to One
 μcs max = Maximum Circadian Shift in Hours
 (C-5: 4.75, C-17: 5.75, C-130: 5.75)

60

Material Airlift Distance Value Model Weights

 The strategic decision maker must assign weights for each of the four metrics so that they

sum to one. We will examine three scenarios for analysis. Scenario one is that the decision

maker weights payload movement a value of one and everything else zero. Scenario two is that

the decision maker weights fuel efficiency a value of one and everything else zero. Scenario

three is that the decision maker weights payload movement at 0.6, fuel efficiency at 0.2,

circadian shift at 0.15 and cycle complete at 0.05. To calculate the value associated with a given

distance, each measure’s value will be multiplied by its weighting and summed according to

Equation 35.

𝜐𝛿 = 𝑤𝑐𝑐𝜐𝑐𝑐 + 𝑤𝑡𝑚𝑝𝑑𝜐𝑡𝑚𝑝𝑑 + 𝑤𝑡𝑚𝑝𝑑𝑘𝑝𝑑𝜐𝑡𝑚𝑝𝑘𝑝𝑑 + 𝑤𝑐𝑠𝜐𝑐𝑠 (35)

 Where:

 υδ = Distance Value
 wcc = Weighting on Cycle Complete
 υcc = Value of Cycle Complete
 wtmpd = Weighting on Ton-Miles Per Day
 υtmpd = Value of Ton-Miles Per Day
 wtmpkpd = Weighting on Ton-Miles Per Klbs Fuel Consumed Per Day
 υtmpkpd = Value of Ton-Miles Per Klbs Fuel Consumed Per Day
 wcs = Weighting on Circadian Shift
 υcs = Value of Circadian Shift

Cutoff Distance Model

 Two questions are important during route planning for the strategic airlift of

requirements. First, should an en route location be selected between on-load and off-load?

Second, if an airfield is to be selected then what distance ranges should be examined to identify

optimal alternatives? For the first question, the benefits to stopping at an en route location

include “cost to carry” avoidance, cargo transfer to maximize each sorties available payload, and

increased payload potential due to reduced fuel load. “Cost to carry” refers to the amount of fuel

61

that is burned due to the added weight of the fuel being carried. The negatives to stopping at an

en route location include increased fuel use for additional climb-out and airfield approach,

decreased capacity utilization due to ground time, increased need for ground support, and

increased risk for aircraft maintenance. The fuel required for the additional climb-out and

approach can often exceed the benefit from the reduced cost to carry. The probability for over-

flight being more fuel efficient than stopping is higher if the en route location is not located

exactly along the route of flight.

 To make the en route stop of enough value to overcome the negatives requires the value

proposition offered by increased payload. From the payload vs distance chart in Figure 15, it

was shown that no payload increase is possible for sorties less than 1,200 NM for the C-17.

Beyond those distances every 100 NM reduction is worth 4,000 pounds of cargo. For long

distance sorties with light payloads, the impact of an en route stop is disproportionately greater.

For example, separating a 2,000 and 4,000 NM C-17 sortie into two segments increases payload

potential 30,000 pounds and 80,000 pounds respectively.

 To determine whether an en route stop is warranted, the value associated with a given

distance was contrasted against the average of the values of potential leg combinations. For

example, if the requirement distance was 1,000 NMs, then the average of the 100 NM leg and the

900 NM leg values was contrasted against the value of 1,000 NM. If the value of the average of

the legs failed to exceed the value of the requirement distance, then the next leg combination of

200 NM and 800NM would be examined. The first distance where the combination value

exceeds the direct flight will be 100 NM above the minimum-cutoff distance for that requirement

distance. This is repeated for each 100 NM increment to obtain a minimum-cutoff distance

model for each aircraft type.

62

Results

 The three scenarios for the value models illustrate the inverted U shape of value with

respect to distance. Figure 16 shows the value associated with a complete weighting on payload

movement for scenario one. The graph shows an inverted U for each aircraft type with peaks in

value ranging from 1,400 NMs to 2,100 NMs. The graph suggests that when building a route

from the origin through a series of en route stops to the destination, the route should not include

sorties consisting of short distances since those would result in low value routing alternatives.

Figure 16: Scenario one value

 The second scenario shows the value associated with fuel efficiency as can be seen in

Figure 17. Once again the shape of the value curve is an inverted U. Short distances and long

distances result in low value with optimal value being achieved in the range from 900 NM to

1,800 NM. The value associated with fuel efficiency tends to rise faster than payload movement.

If an airlift planner is attempting to optimize on fuel efficiency, then the number of en route stops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

Value

Distance (NM)

C-5

C-17

C-130

63

is likely greater than the optimal number of stops for cargo throughput. In an anlysis of

seventeen randomly selected origin and destination pairs, the number of en routes stops was

sixteen percent greater when optimizing on fuel efficiency than when optimizing on cargo

throughput.

Figure 17: Scenario two value

 The third scenario illustrates a mix of the four measures. The value graph for the third

scenario is shown in Figure 18. The inverted U is apparent once again and the optimal range is

from 1,300 NMs to 1,600 NMs. Three scenarios were selected to show the robustness of the

inverted U to changes in subjective decision maker values. As long as there is a substantial

weighting on payload movement and fuel efficiency, then short sortie distances and long sortie

distances will tend to have low value.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

Value

Distance (NM)

C-5

C-17

C-130

64

Figure 18: Scenario three value

 Given these value models, we created a cutoff distance model that provides the

minimum-cutoff distance given an origin and destination requirement distance. The results of

the cutoff distance models for each scenario and aircraft type can be seen in Figure 19. In

addition to the cutoff distance for each aircraft type a line is included that shows the minimum of

the minimum-cutoff distances. Two important airlift planning implications arise from the three

graphs. First, it is unnecessary to plan an en route stop if the requirement distance is less than

1,700 NMs. This observation eliminates the necessity for routing algorithms for any requirement

under 1,700 NMs. Second, nodal reduction declines as distance increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

Value

Distance (NM)

C-5

C-17

C-130

65

Figure 19: Cutoff Distance Models

 To assess the impact of minimum-cutoff distance on path algorithm accuracy and speed,

50 random origin destination requirement pairs were selected. The optimal path was calculated

for each requirement based off of the maximum cargo throughput in cargo Klbs per day and the

maximum fuel efficiency in cargo Klbs per day per Klbs of fuel consumed. For simplicity, the

path algorithm chosen was simple enumeration of all possibilities for up to three sortie paths.

The cutoff distance model selected was based on the minimum for all three scenarios for the C-

17 and is shown in Figure 20.

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

Scenario
1

Min
Cutoff

Distance

C-5
C-17
C-130
Min

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

Scenario
2

Min
Cutoff

Distance

C-5

C-17

C-130

Min

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

Scenario
3

Min
Cutoff

Distance

Distance (NM)

C-5
C-17
C-130
Min

66

Figure 20: Minimum cutoff distance model used for analysis

 In all of the fifty origin and destination pairs randomly selected, the optimal path for

cargo throughput with nodal reduction was the same as the optimal path for cargo throughput

without nodal reduction. The same is true for all fifty pairs with respect to fuel efficiency. For

example, take the median distance sample point of Kaolack airfield, Senegal to Wilmington

airfield in the United States. The optimal path for cargo throughput in both the “with nodal

reduction” and “without nodal reduction” cases includes a single stop at Pico Islands airfield in

the Azores and achieved a cargo throughput of 54 Klbs of cargo per day. The optimal path for

fuel efficiency in both the “with nodal reduction” and “without nodal reduction” cases includes

two stops. The first stop is the Santa Maria airfield in the Azores and the next stop is St. John’s

airfield in Newfoundland. The fuel efficiency for that route is 0.37 Klbs per day of cargo per

Klbs of fuel consumed. Without nodal reduction, this origin-destination pair had 673 airfields in

the lens, 83,812 route alternatives and took 41 seconds to calculate. With nodal reduction, this

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000

Three
Scenario
Min For

C-17
Min

Cutoff
Distance

(NM)

Distance (NM)

67

origin-destination pair had 358 airfields in the lens, 11,095 route alternatives and took 12

seconds to calculate.

 Examination of all fifty origin-destination pairs results in an average nodal reduction of

40%, an average route alternative reduction of 70% and an average computation time reduction

of 55%. The reduction tended to be greater at lower distances as would be expected by the

cutoff distance model. Figure 21 shows the percentage reduction in computation time by using

nodal reduction for each of the 50 origin-destination pairs. There was one anomaly that required

a portion of the airfields removed by the minimum-cutoff distance model to be reintroduced.

This was due to pavement strength at the source airfield. The problem is that airfields with

extremely low pavement strength will severely limit either fuel or payload. An aircraft at such

an airfield could take a large payload and a small quantity of fuel, fly a short distance to a high

pavement strength airfield, and fill up with fuel to fly the distance required. This is often the

optimal solution for low pavement strength airfields for both cargo throughput and fuel

efficiency.

Figure 21: Nodal reduction computation time reduction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000

Percentage
Reduction in
Computation

Time

Distance (NM)

68

 To resolve the pavement strength anomaly, when airfield pavement strength at the origin

results in less than 90% maximum gross takeoff weight, then airfields previously removed that

have a pavement strength that is at least 10% stronger than the origin airfield and are at distances

from the destination that are between the distance from origin to destination and the distance

from origin to destination minus minimum-cutoff are reintroduced. This can be seen by the

small time reduction of 11% for the pavement restricted origin airfield at Niagara Falls in Figure

21. Of the 50 origin-destination pairs, 7 were affected by the pavement anomaly. It is worth

mentioning that the pavement anomaly is also a situation when it would make sense to go

backward away from the destination, so some thought might be given to adding in high

pavement strength airfields close to the origin but farther from the destination than the source is

to the destination.

Conclusion

 The SAP requires the development of paths based from user requirements. A method to

remove suboptimal airfield nodes from path generation would enhance the speed with which

potential alternative paths can be processed and analyzed. Rapid path development for a

heterogeneous set of aircraft is required prior to assigning cargo. Paths determine payload

capability and payload capability determines what requirements should be assigned to which

aircraft within an enterprise. How can the capacity of an edge of the capacitated vehicle routing

problem be assigned without first assessing what the optimal path is for that edge? This research

aids in the rapid calculation of this critical first step.

 The strategic planning distance value model can be used for suboptimal airfield node

removal, routing prioritization amongst alternatives, requirement aggregation and assignment of

aircraft to requirements. Suboptimal airfield node removal is achieved through the minimum-

69

cutoff distance model. Speed is critical to airlift planning. External stimuli affecting one

mission can quickly cascade to impact multiple missions. The ability to rapidly respond to these

external stimuli can have a large impact on the overall efficiency of the enterprise. By providing

the minimum-cutoff distance model, routing algorithm execution time is reduced. This in turn

establishes capacity for the capacitated vehicle routing problem. Enabling operational airlift

planners in both the civil aviation industry and the military to more rapidly optimize path

alternatives through nodal reduction techniques has the potential to provide quicker analysis for

time sensitive applications.

70

Nodal Reduction Heuristics Applied to Route Generation for Enterprise

Airlift Evaluation

Introduction

 The Strategic Airlift Problem (SAP) attempts to optimally schedule a set of aircraft to

airlift a set of requirements over a set of airfields (Reiman et al., 2014). Rappoport et al. (1992)

considered the airlift planning problem a vehicle routing problem with time and capacity

constraints. Crino et al. (2004) described the SAP as a theater distribution vehicle routing and

scheduling problem with the aircraft as modes and airfields as nodes. Given that the number of

en route airfield nodes between requirement source and destination is n and assuming that each

node visited is closer to the destination than the previous node, then the potential number of

routing alternatives is 2n. Balakrishnan suggests that routing decisions for the problem become

complex because of the “large number of intermediate cities” (Balakrishnan, Chien, & Wong,

1989).

 To understand the impact of this large number of intermediate cities, n, we selected the

Digital Aeronautical Flight Information File (DAFIF) database of 5,342 unique International

Civil Aviation Organization (ICAO) airfields. Without the assumption that each node has to be

closer to the requirement destination than the last, approximately e multiplied by n factorial route

combinations exist. This results in e * 5,340! or 4.32 * 1017,588 potential route combinations. For

a given requirement, examination of all of these alternatives would be too computationally

extensive. Simple heuristics can rapidly reduce the number of routes without eliminating

valuable alternatives. Bodin (1990) stated that, “because of the computational complexity in

solving vehicle routing and scheduling problems to optimality, heuristics are employed.”

71

 Reiman et al. (2014) suggested two simple heuristics to reduce the number of route

alternatives. The first heuristic suggests that there is no value flying to an en route location that

is farther from the source than the source is to the destination. The second heuristic suggests that

there is no value flying to an en route location that is farther from the destination than the source

is to the destination. This results in the “eye shape” shown in Figure 22. Application of this

heuristic to every en route node selection reduces the number of routes by reducing the size of n

and by switching the route calculation formula from e * n! to 2n.

Figure 22: Eye shape (GCMap)

 The impact of these simple heuristics on route combinations is highlighted in Table 12.

Pascal’s triangle (1665) can be seen in the route combinations of Table 12. The intersection of

72

each number of en route stops k and number of airfield nodes n in the table is calculated using

Equation 36 and the “no heuristics” column is calculated using Equation 37. The problem

highlighted by Table 12 is that when the selected requirement source and destination are near

antipodal (opposite locations on the globe), n approaches 5,340 airfields. This results in too

many alternatives to be rapidly analyzed. This indicates that further nodal reduction heuristics

could be advantageous to reducing computation time.

 �𝑛𝑘� = 𝑛!
(𝑛−𝑘)!(𝑘!)

 (36)

∑ 𝑛!
𝑘!

𝑛
𝑘=0 (37)

Table 12: Effect of increasing en route airfields on the number of routes

Number of
En Route

Airfields (n)

Number of En Route Stops (k)
Total

2n

No
Heuristics

�
𝑛!
𝑘!

𝑛

𝑘=0

 0 1 2 3 4 5

0 1 1 1
1 1 1 2 2
2 1 2 1 4 5
3 1 3 3 1 8 16
4 1 4 6 4 1 16 65
5 1 5 10 10 5 1 32 326
6 1 6 15 20 15 6 64 1,957
7 1 7 21 35 35 21 128 13,700
8 1 8 28 56 70 56 256 109,601
9 1 9 36 84 126 126 512 986,410
10 1 10 45 120 210 252 1,024 9,864,101

5340 1 5340 1E+07 3E+10 3E+13 4E+16 3E+1,607 4E+17,588

73

 We recommend several nodal reduction heuristics in an effort to reduce the number of

potential routes analyzed. These include the minimum cutoff distance, total distance multiple,

effective runway length, runway length, runway width, pavement strength, departure obstacles

and diplomatic clearance heuristics. Minimum cutoff distance was developed by Reiman et al.

(2014) and was derived from their distance value model. It attempts to remove airfield nodes

that are located too close to the requirement source or destination. Total distance multiple

represents the ratio of route length to the Vincenty elliptical Earth distance from source to

destination (Vincenty, 1975). This heuristic suggests that airfields that are located farther from

the great circle route often are of less value than those situated closer. Effective runway length is

a heuristic that uses latitude, elevation and actual runway length to remove airfield nodes of low

value. The runway length and width heuristics eliminate airfield nodes from consideration if

their runway length or width is less than that mandated for a given aircraft type. Pavement

strength filters remove unsuitable airfields based on the maximum aircraft gross takeoff weight

that a given type of pavement can support. The departure obstacle heuristic seeks to remove

airfields that require a high climb gradient which reduces the maximum aircraft gross takeoff

weight. Finally, the diplomatic clearance heuristic reduces nodes by removing countries that

pose diplomatic clearance difficulties. To understand the impact of these nodal reduction

heuristics on route reduction, a sample set of requirements is used.

Requirements

 A requirement is defined by cargo on-load at an origin airfield and cargo off-load at a

destination airfield. Li et al. (2010) defined the origin and destination airfields as OD pairs. To

establish a set of requirements, one hundred OD pairs are randomly selected from the 5,342

ICAO unique airfields in the DAFIF airfield database. The sample set of random OD pairs is

74

shown in Table 13. The distances between source and destination vary from 400 nautical miles

(NMs) to over 10,000 NMs. The shortest distance OD pair is Gaborone, Botswana (FBSK) to

Livingstone, Zambia (FLLI) and the longest pair is Barrow Island, Australia (YBWX) to

Hacienda El Calvario, Venezuela (SVHD). The number of en route airfields within the eye-

shape of each OD pair varies from 10 to 5,109 airfields.

Table 13: Randomly selected OD pairs

From
ICAO

To
ICAO

 From
ICAO

To
ICAO

 From
ICAO

To
ICAO

 From
ICAO

To
ICAO

1 FBSK FLLI 26 GOOK KILM 51 SBBT LFRV 76 KNBC ZSYN
2 OLRA LTAC 27 CYUB MHTG 52 FMCZ EGQS 77 RPUR KSAW
3 KIAG CYQI 28 SBKG LFMV 53 DNYO KMMU 78 MUFL OIKP
4 KLOZ CYOW 29 OIKQ FAUT 54 DABB SKIB 79 OEJN KBRO
5 KTUP CYYB 30 PATE EBBE 55 RJCB LSMS 80 LTBG YNTN
6 LEPP DAUI 31 UHBB PHIK 56 SBLO LFRU 81 FATZ KMCF
7 HHAS ORSH 32 OIID FAMM 57 CYYD LGHI 82 PAGL SBCH
8 UAOO LTAU 33 LILH TLPL 58 WBKS PACX 83 PHJR SBRF
9 TNCE KFME 34 VTBD YGLB 59 LFGF MMGM 84 ESNJ SAZN

10 MPHO KGWO 35 MMBT PAVL 60 LFMT MMML 85 YWIS SEAM
11 WITL RPUT 36 CYAU DGTK 61 KNUQ ZBTJ 86 SCDW VOCI
12 VOTP OEAH 37 CZPC EDAX 62 SETU LIEO 87 EGNL YKKG
13 KAJO CYSN 38 WALG UWOR 63 LRCL KBAB 88 SVSA RKRN
14 ZGOW WATG 39 EPWR KJYL 64 SEIN LIPB 89 KABI VDSV
15 FYTM GLMR 40 SPTN KSLC 65 EDCP SPEP 90 SVOK RKSM
16 VTUN YMDY 41 KSGF SBQV 66 KCPR ROTM 91 YDPO LKTB
17 LIBP HCMH 42 DISP ENSB 67 LFRD WMKF 92 SKPQ VOYK
18 CYVB EDCD 43 RJSI ESML 68 PCIS MBAC 93 EGCC YGDH
19 TJMZ KMER 44 WIMN LRIA 69 DNKT PANT 94 SCVI VARP
20 FOOK EHRD 45 SLBJ NTGT 70 YNBR UTSB 95 FAMG KTRM
21 CYPX LHBC 46 SLPS NTTO 71 TQPF OYRN 96 NTKF FWUU
22 CYTR ETEK 47 FMNE EGUO 72 KEGE FKKM 97 EGPO YMML
23 SAOR MUSN 48 MMQT EGCD 73 SAZP EKVD 98 ETHF NZKT
24 MTPP LPMR 49 PANO VYKG 74 YCMU HAMK 99 ETNU NZPM
25 SPHO KPUB 50 DAUZ SKSA 75 YJBY PAFB 100 YBWX SVHD

 The specific source and destination can have a great impact on the number of airfields

within the eye shape. Figure 23 illustrates the wide variance on the number of en route airfields

associated with a given distance. Only one OD pair (FBSK-FLLI) out of those randomly

selected results in less than one million routing alternatives. One option for reducing the number

75

of airfields in Figure 23 is to reduce the size of the eye shape from Figure 22. Two heuristic

nodal reduction techniques lead to this reduction in size.

Figure 23: En route airfields vs distance for selected requirements

Requirement based heuristics

 The two heuristic nodal reduction techniques for a given requirement are the minimum

cutoff distance and the total distance multiple. The minimum cutoff distance heuristic reduces

the size of the eye shape but does not alter the shape. The total distance multiple heuristic alters

the eye shape so that the airfield nodes closest to the corners of the eye are eliminated first. We

recommend using minimum cutoff distance before the total distance multiple since the total

distance multiple can more easily select the exact number of airfields desired for analysis.

Minimum cutoff distance

 Reiman et al. (2014) recommended a cutoff distance model where the addition of an

airfield stop below a given distance would fail to add sufficient value to even consider that

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000

Potential
En route
Airfields

Distance (NM)

76

option as an alternative. This would reduce the size of the eye shape as seen in Figure 24. The

minimum cutoff distance serves two purposes. First, it reduces n, the number of airfields that

can be found within the eye shape. Second, it limits k, the number of potential en route stops.

The number of potential en route stops is limited by the floor of the ratio of the Vincenty

elliptical earth distance between source and destination and the minimum cutoff distance minus

one as seen in Equation 38. For example, for a 4,500 NM requirement, a 1,000 NM cutoff limits

the number of k en route stops to three. Limiting the number of k has tremendous route

reduction potential as can be seen in Table 12.

𝑘 = 𝐹𝑙𝑜𝑜𝑟 �𝑉𝑖𝑛𝑐𝑒𝑛𝑡𝑦 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑎𝑙 𝐸𝑎𝑟𝑡ℎ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐶𝑢𝑡𝑜𝑓𝑓 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

� − 1 (38)

Figure 24: Eye shape with cutoff distance applied (GC Mapper)

77

 The cutoff distance model used is based off of the value model from Reiman et al.

(2014). The value model weightings were changed to weight payload movement and fuel

efficiency at 0.5. The exact cutoff distance model used is shown in Figure 25. The C-17 is range

limited beyond 4,500 NMs. This does not allow for a value comparison to create the cutoff

distance model beyond this distance. To adjust for this, we assume that airfield density is

sufficient enough for OD pairs above 4,500 NM to have an airfield node available at least every

4,500 NMs. Given this assumption, all OD pairs beyond 4,500 NMs will use the cutoff of 400

NMs.

Figure 25: Cutoff distance model

 Applying the minimum cutoff distance model to the 100 randomly selected OD pairs

results in the airfield reductions highlighted in Figure 26. The use of the model leads to a 27%

reduction in airfields. As OD pair distances increase, the potential for airfield reduction declines.

At OD pair distances less than 4,000 NMs, nodal reduction is in excess of 70%. Although the

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000

C-17
Cutoff

Distance
(NMs)

OD Pair Distance (NMs)

78

cutoff distance model performs well against requirements less than 4,000 NMs, there is a need

for further airfield nodal reduction at distances greater than 4,000 NMs.

Figure 26: Average percentage airfield reduction vs OD pair distance

 The minimum cutoff distance nodal reduction heuristic is applied iteratively for route

creation. A route is defined as a set of sorties that create a path from origin to destination. A

sortie is defined as an aircraft flight between two airfields with no en route stops in between.

Minimum cutoff distance is applied to each sortie of a route. Application of the minimum cutoff

distance to an OD pair will result in the set of potential airfields for one en route stop. This set of

airfields is labeled primary en route airfields. After selection of a primary en route airfield as an

en route stop, the primary en route airfield is treated similarly to the requirement source. A

Vincenty elliptical Earth distance and a minimum cutoff distance are calculated for the new OD

pair. A new eye shape is formed creating a set of secondary en route airfields associated with a

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Average
Percent
Airfield

Reduction

City-Pair Distance (1,000 NMs)

79

given primary airfield. Given the set of primary en route airfields and the set of secondary en

route airfields associated with each primary, all potential routing alternatives can be calculated.

 All primary en route airfields are cycled through for one stop routes. Then, each primary

loops through all of their secondary airfields to create all two stop routes. For three stop routes,

the secondary airfields will be matched against primary airfields. If the matched primary has

secondary airfields, then all three stop routes will be created. This process will continue until all

route combinations have been created. Given the high number of primary en route airfields at

distances over 4,000 NMs, even with the utilization of the minimum cutoff distance heuristic, the

number of route combinations is still too large for rapid computation and analysis.

Total distance multiple

 Unlike the cutoff distance model, the total distance multiple provides for tailored nodal

reduction at OD pair distances in excess of 4,000 NMs. Total distance multiple calculates the

ratio of route length to minimum route length. The theory is that there is more value to airlifting

over the minimum distance possible. Additional distance travelled in a no wind or constant wind

field scenario results in more fuel consumed and often less payload available. To reduce fuel

consumption and maximize payload, the goal is to minimize the total distance multiple. Total

distance multiple is calculated according to Equation 39. For one en route stop, using the eye

shape airfield constraint, the range of this ratio is limited from one to two. If the en route stop is

along the Vincenty elliptical Earth path, the ratio is one and if the en route stop is at the corner of

the eye, the ratio is two. Examples of limiting this ratio are shown in Figure 27 for the OD pair

San Pedro, Cote D’ Ivoire (DISP) to Longyear, Norway (ENSB). In the two and 1.5 distance

multiples, airfields in North America are considered as options. This illustrates the weak value

posed by airfields at high distance multiples.

80

𝜓 =
∑ 𝛿𝑖
𝑗
𝑖=1
𝛾

 (39)

Where:

ψ = Total distance multiple for en route airfield
i = Sortie number of the route
j = Total number of sorties on the route
𝛿𝑖 = Vincenty elliptical Earth distance for that sortie
𝛾 = Vincenty elliptical Earth distance for the OD pair

 ψ = 2.0 ψ = 1.5

 ψ = 1.2 ψ = 1.1 ψ = 1.01 ψ =1.001 ψ =1.0001

Figure 27: Airfield reduction by constraining ψ (Google Maps API)

 If ψ is calculated for all routes with one en route stop, then airfields can be prioritized

based on their ψ and only the top number of airfields selected by the decision maker can be

81

included for further analysis. For example, the decision maker can request only to analyze the

top 500 airfields closest to the Vincenty elliptical Earth route. This empowers the decision

maker to control the trade-off between the number of potential alternatives and the computation

time required to give a result. To better illustrate the relationship between total distance multiple

and value, 30 OD pairs are selected at evenly spaced intervals. Value is determined using the

Reiman et al. (2014) value model. An example of the 25th, 50th, 75th, and 100th distance ranked

OD pair’s route value data are displayed in Figure 28. Each data point in the plot represents a

potential en route airfield stop. The data shows that the highest airlift value is reduced as ψ

increases. In all cases, eliminating distance multiples greater than 1.4 results in the removal of

only airfields whose value was in the bottom 80% of value.

Figure 28: Impact of ψ on route value

0

10

20

30

40

50

60

70

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Route
Value

Total Distance Multiple

25

50

75

100

82

 The total distance multiple is used to select a set number of top ranked airfields for both

the primary en route airfields and secondary en route airfields to establish the desired

computation time and accuracy for route creation. The caveat is that setting the maximum

number of primary or secondary airfields too low, might remove some valuable alternatives.

Prior to route creation and establishment of the primary and secondary airfields, other filters to

remove extremely low valued airfields should be utilized.

Airfield characteristic heuristics

 What airfield characteristics should be used to eliminate low value route options? Baker

et al. (2002) selected Maximum on the Ground (MOG) and fuel when modeling airfield

constraints in their NPS/Rand Mobility Optimizer (NRMO). Yet, MOG and fuel change too

quickly to be filtering options for route creation. These characteristics should be modeled as

constraints applied to routes already developed. Naylor (2009) selected source and destination

distance of the en route airfield, parking capacity, fuel capacity, diplomatic relations with the

host country, proximity to seaports, number of potential destination airfields, and cargo

throughput as airfield characteristics of value for en route airfield selection.

 Parking capacity, fuel capacity and proximity to seaports are only constraining under

certain usage scenarios and are therefore not used for en route airfield filtering. Since cargo

throughput is dependent on sortie distance, pavement strength, runway length, and departure

obstacles, these airfield characteristics are further analyzed as filtering opportunities. In addition

to the airfield characteristics that impact cargo throughput, runway width and diplomatic

relations with the host country are also analyzed as nodal reduction heuristics.

83

 Effective runway length

 A potential target for filtering airfields should be runway length. Runway length is an

important airfield attribute for both takeoff and landing. The measure most often used to

determine the minimum runway length required for takeoff is the critical field length (CFL).

Several factors impact the CFL. These factors include gross weight, temperature, pressure

altitude, thrust setting, flap setting, winds, runway slope, runway condition reading (RCR), and

runway surface condition (RSC). Assuming average gross takeoff weight for a specific aircraft

type based off of November 2010 data, standard day temperature, sea level pressure altitude,

standard thrust setting, standard takeoff flap setting, zero winds, zero runway slope, dry RCR,

and zero RSC, the required CFL for takeoff for the C-5, C-17 and C-130J is 8,500 feet, 6,500

feet and 4,500 feet respectively. These CFLs worsen as temperature and pressure altitude

increase. The measure most often used as the minimum runway length required for landing is

the landing distance over a 50 foot obstacle. The distance to land over a 50 foot obstacle

assuming similar assumptions is 5,000 feet, 4,500 feet and 3,500 feet for the C-5, C-17 and C-

130J respectively. Takeoff therefore is often more constraining than landing.

 Given that takeoff CFL is often the constraining factor for required airfield length, it is

the ratio of actual runway length to the takeoff CFL that is of primary concern. There are two

airfield specific attributes that can aid in the calculation of takeoff CFL. These include pressure

altitude and temperature. Pressure altitude is determined using airfield elevation and temperature

is determined using airfield latitude and elevation from the DAFIF database. Figure 29

illustrates the impact of latitude on average monthly temperature. The average monthly

temperature data for Figure 29 comes from the University of Delaware (2012) and covers the

period from 1981-2010. Using the temperature data, a regression is calculated to determine

84

average temperature given latitude for each month. Equation 40 is the regression equation for

temperature φ in degrees Celsius. Table 14 provides the regression coefficients and the adjusted

R2 for each respective month and the yearly average.

 𝜑 = 𝛽0 + 𝛽1𝜎 + 𝛽2𝜎2 + 𝛽3𝜎3

1,000,000
 (40)

Where:

𝜑 = Sea level temperature in degrees Celsius
σ = Latitude in decimal degrees

Figure 29: Average monthly sea level temperature vs latitude (1981-2010)

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

-90.00 -60.00 -30.00 0.00 30.00 60.00 90.00

Temp
Deg C

Latitude

Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec

85

Table 14: Average monthly temperature 𝝋 regression coefficients and adjusted R2

𝛽0 𝛽1 𝛽2 𝛽3 Adj R²

Jan 23.16 -0.2832 -0.0084 26.06 0.9667
Feb 24.78 -0.2575 -0.0092 30.32 0.9765
Mar 26.80 -0.1651 -0.0099 28.21 0.9824
Apr 27.67 -0.0311 -0.0097 20.00 0.9797
May 27.06 0.0825 -0.0088 15.77 0.9784
Jun 26.33 0.1696 -0.0080 12.45 0.9796
Jul 26.17 0.1984 -0.0077 12.91 0.9805

Aug 26.80 0.1565 -0.0080 18.38 0.9799
Sep 27.26 0.0703 -0.0085 22.54 0.9811
Oct 26.89 -0.0315 -0.0089 21.87 0.9805
Nov 24.95 -0.1474 -0.0086 20.51 0.9738
Dec 23.21 -0.2418 -0.0082 22.29 0.9643
Year 25.92 -0.0400 -0.0087 20.94 0.9814

 Once sea level temperature has been determined, an adjustment needs to be made to

correct for airfield elevation according to Equation 41. This correction is based off of the

standard day model. Given this adjusted temperature 𝜑𝑎𝑑𝑗 and the airfield elevation, the CFL for

a given aircraft can be determined. Using data from Air Force Technical Order 1MDS-1-1, a

regression was performed that determined CFL 𝜃 given temperature and elevation as seen in

Equation 42. The coefficients and adjusted R2 for different aircraft types are shown in Table 15.

 𝜑𝑎𝑑𝑗 = 𝜑 + 𝛽𝐴𝑙𝑡𝛼 (41)

Where:

𝜑𝑎𝑑𝑗 = Airfield temperature in degrees Celsius
𝜑 = Sea level temperature in degrees Celsius
𝛽𝐴𝑙𝑡 = -1.9812 degrees Celsius per thousand feet
𝛼 = Elevation in thousands of feet

86

 𝜃 = 𝛽0 + 𝛽1𝜑𝑎𝑑𝑗 + 𝛽2𝛼 + 𝛽3𝛼2 (42)

Where:

𝜃 = Critical field length in feet
𝛼 = Elevation in thousands of feet

Table 15: Critical field length 𝜽 regression coefficients and adjusted R2

 𝛽0 𝛽1 𝛽2 𝛽3 Adj R2

C-5 5443 12.96 17.10 113.6 0.9787
C-17 2962 14.95 92.40 12.49 0.9981

 Airfields can be filtered using the actual runway length. This is useful to remove airfields

that are less than a regulation defined minimum runway length. Air Force Instruction 11-2MDS-

V3 (2011) declares that the minimum runway length is 6,000 feet for the C-5, 3,500 feet for the

C-17 and 3,000 feet for the C-130. Filtering airfield nodes based off these aircraft minimums

results in the airfield reduction potential shown in Figure 30. Filtering on minimum runway

length reduces the number of C-5 airfields by 40 percent, the number of C-17 airfields by six

percent, and the number of C-130 airfields by one percent. Yet, this reduction retains many

airfields that could be of low value due to a combination of high temperatures and high pressure

altitudes and eliminates potentially valuable airfields at sea level and cold temperatures.

Adjusting actual runway length to take into account aircraft capability with respect to both

pressure altitude and temperature could provide for a superior metric to filter airfields.

87

Figure 30: Number of airfields remaining vs actual runway length

 Juan Mendoza (SLOR) airfield in Bolivia has an average annual temperature of 18

degrees Celsius and is located at 12,146 feet elevation. The runway at the airfield is 6,125 feet

long. The CFL of a 420,000 pound C-17 at SLOR is 6,195 feet. Since the CFL exceeds the

actual runway length, the aircraft is not allowed to takeoff from the airfield without reducing fuel

or cargo. Compare this to Alert (CYLT) airfield in Canada which has an average annual

temperature of -20 degrees Celsius and is located at 100 feet elevation. The runway at CYLT is

5,500 feet, 625 feet shorter than SLOR. Yet, the CFL of a 420,000 pound C-17 at CYLT is

2,670 feet, which is less than half that of SLOR. The CYLT aircraft could carry an additional

180,000 pounds of cargo and fuel before the CFL exceeds the actual airfield length.

 To better filter airfields so that runways reflect capability, an effective runway length will

be calculated from actual runway length, airfield elevation and average annual temperature.

Equation 43 calculates effective runway length 𝜎𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 by multiplying the actual runway

length by the CFL at standard day temperature and sea level divided by the CFL at the airfield

0

1000

2000

3000

4000

5000

6000

1000 3000 5000 7000 9000 11000 13000

Number
of

Airfields
with

1 Runway
Greater

Than
That

Length

Runway Length (Feet)

88

latitude and elevation determined temperature and actual airfield elevation. The impact of

effective runway length on the airfields in the database for the C-17 is shown in Figure 31.

 𝜎𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝜎𝐴𝑐𝑡𝑢𝑎𝑙 ∗
𝜃𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝜃𝐴𝑐𝑡𝑢𝑎𝑙

 (43)

Where:

𝜎𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = Effective runway length
𝜎𝐴𝑐𝑡𝑢𝑎𝑙 = Actual runway length
𝜃𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = Critical field length at sea level and standard day temperature
𝜃𝐴𝑐𝑡𝑢𝑎𝑙 = Critical field length from Equation 42

Figure 31: Impact of latitude and elevation on 𝝈𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 − 𝝈𝑨𝒄𝒕𝒖𝒂𝒍

 Returning to the examples of SLOR and CYLT, the actual runway length for SLOR is

6,125 feet and for CYLT is 5,500 feet. The effective runway length for these airfields using

Equation 43 is 3,296 feet for SLOR and 6,739 feet for CYLT. If we filter based off the

minimum runway length for the C-17 of 3,500 feet using actual runway length, both airfields

-8000

-6000

-4000

-2000

0

2000

4000

-80 -60 -40 -20 0 20 40 60 80

Effective
Rwy and

Actual
Rwy
Delta

in Feet

Latitude

Sea level to 2,000 feet

2,000 feet to 4,000 feet

> 4,000 feet elevation

89

would have been retained, but by using effective runway length instead of actual, the low value

airfield SLOR would have been removed. Although the percentage of airfields removed for the

effective runway is similar to the percentage removed using the actual runway, the effective

runway length metric ensures that the appropriate low valued airfields are filtered out.

 Runway width

 Not only are specific aircraft limited by regulation to a minimum runway length, they are

also limited to a minimum runway width. According to Air Force Instruction 11-2MDS V3, the

C-5, C-17 and C-130 have minimum runway widths of 147 feet, 90 feet, and 80 feet respectively.

Removing airfields below these minimum requirements would ensure that low value options are

not analyzed. Figure 32 illustrates that filtering on runway width alone reduces the number of

airfields by 47 percent for the C-5, 14 percent for the C-17, and 13 percent for the C-130. When

filtering on the length and the width simultaneously, many of the airfields removed are the same.

Filtering on runway width differs from runway length in that there is a takeoff weight benefit to

additional runway length that does not exist with additional runway width. This suggests that the

aircraft specific minimum runway width from regulation would be the primary and likely only

criteria upon which the decision maker would filter.

Figure 32: Airfield percent reduction by filtering on regulation minimums

0%

10%

20%

30%

40%

50%

60%

Min Rwy Length Min Rwy Width Length or Width

C-5

C-17

C-130

90

 Pavement strength

 Gendreau and Soriano (1998) evaluate the structural capacity of airfield pavements with

the aircraft and pavement classification numbers discussed by Lurdes et al. (1990) and Alexander

and Hall (1991). To filter off of pavement strength, the pavement classification number (PCN)

field from the DAFIF database is used. The PCN is a seven character alphanumeric designator.

The first three characters of the PCN are the PCN number. The fourth character is the type of

pavement and can either be R for rigid or F for flexible. The fifth character is the pavement

subgrade category and includes high (A), medium (B), low (C) and ultra-low (D). The sixth

character represents the highest tire pressure authorized and the seventh character designates

whether the classification came from aircraft experience or technical evaluation. Using the first

five characters, the maximum weight of the aircraft for that pavement can be determined.

 The relationship between the PCN number and maximum aircraft weight is linear.

Equation 44 shows that relationship. For each aircraft, pavement and subgrade type there is an

associated slope and intercept as shown in Table 16. These values were determined using the

aircraft classification number (ACN) from Air Force Pamphlet 10-1403. Martin and Voltes-

Dorta (2011) use maximum gross takeoff weight as a proxy for ACN. Airfields can then be

filtered based on the selected weight for a given aircraft type. Of the 5,342 airfields in the

DAFIF database, 3,000 airfields had PCN values for the longest runway other than NULL. We

illustrate the impact on airfield reduction of using operating weight and the weight required to fly

50 NMs (an example short distance sortie) for the three aircraft types in Figure 33.

91

𝜔 = 𝜔𝑎𝑐𝑛 ∗ 𝜌 + 𝜖𝑎𝑐𝑛 (44)

Where:

𝜔 = Aircraft maximum gross weight on pavement
𝜔𝑎𝑐𝑛 = Aircraft specific change in weight per change in 𝜌
𝜌 = PCN number (first three characters)
𝜖𝑎𝑐𝑛 = Aircraft specific maximum weight at zero 𝜌

Table 16: Aircraft maximum weight parameters

C-5 C-17 C-130

Pavement/Subgrade 𝜔𝑎𝑐𝑛 𝜖𝑎𝑐𝑛 𝜔𝑎𝑐𝑛 𝜖𝑎𝑐𝑛 𝜔𝑎𝑐𝑛 𝜖𝑎𝑐𝑛
FA 17.26 201.41 8.91 121.59 3.75 62.50
FB 15.53 172.07 7.77 126.62 3.46 57.31
FC 12.59 159.89 6.18 145.96 3.46 46.92
FD 8.32 174.29 4.59 153.45 3.10 41.55
RA 22.19 196.48 10.10 59.80 3.46 57.31
RB 35.85 15.54 10.10 59.80 3.21 56.07
RC 16.64 190.93 10.10 59.80 3.00 52.00
RD 13.71 182.12 6.59 123.91 2.90 50.16

Figure 33: Airfield reduction based on pavement strength and aircraft gross weight

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

C-5 C-17 C-130

Airfield
Reduction Based

on
Pavement

Weight
Bearing Capacity

Aircraft Types

Operating
Weight

50 NM
Flight

92

 Analyzing the overlap between runway length, width and pavement filtering results in 98

percent of C-5 airfields, 20 percent of C-17 airfields, and zero percent of C-130 airfields

removed using the pavement filter having been previously removed with the runway length or

width filters.

 Departure obstacles

 Given that the runway is of sufficient length and width and the pavement is of sufficient

strength for an aircraft, the maximum weight for takeoff of that aircraft can still be negatively

impacted by departure obstacles. Certain runways require specific climb gradients to ensure

adequate obstacle avoidance. These climb gradients are not entered as a field inside the runway

table of DAFIF, but instead are included in a comment block on a separate table. Of the 5,342

airfields in the database, 1,294 have an obstacle that protrudes through the 40 to one obstacle

clearance surface (OCS). The OCS is a cone established at the end of the runway through which

no obstacles should protrude. If an obstacle protrudes this surface, climb gradient information

required to clear the obstacle is published. Of the 1,294 airfields, 313 require a climb gradient

higher than the standard of 200 feet per NM to ensure obstacle avoidance. These climb gradients

range from 201 to 776 feet per NM. In addition to decreasing the maximum gross takeoff

weight, higher climb gradients increase the risk of pilot error resulting in controlled flight into

terrain (CFIT) accidents. Oster, Strong and Zorn (2013) show that pilot error including CFIT is

responsible for 20 percent of aviation fatalities from 1990 to 2011.

 To better illustrate the impact of climb gradients, Jackson Hole airfield in Wyoming is

used as an example. Jackson Hole is the site of a 1996 CFIT accident. Jackson Hole airfield has

a large mountain to the north of the airfield at 13,770 feet. This mountain penetrates the OCS

and therefore requires a climb gradient in excess of 200 feet per NM to clear. The actual climb

93

gradient published to clear this obstacle is 450 feet per NM up to 14,000 feet. For an aircraft to

meet this climb gradient at the airfield’s elevation and temperature, the gross weight at takeoff

must be limited. An aircraft can land at this airfield with a heavier gross weight, but would be

unable to leave due to the climb gradient. This would make the airfield a low value option as an

en route selection.

 In order to assess the value limitation imposed by departure obstacles, actual aircraft

climb gradient capability is calculated. The climb gradient for the C-17 was determined using

the regression formula in Equation 45. The regression was based off of data from the climb-out

factor charts in the Technical Order 1-MDS-1-1. Table 17 shows the parameters and adjusted R2

of this regression. Using the maximum climb gradients for each of the 313 airfields, the

maximum gross weight at takeoff for the C-17 is calculated as shown in Equation 46. The C-17

maximum gross takeoff weight is plotted against the climb gradient in Figure 34.

 𝜏 = 𝛽0 + 𝛽1𝜑𝑎𝑑𝑗 + 𝛽2𝛼 + 𝛽3𝜔 (45)

Where:

𝜏 = Climb gradient in feet per NM
𝜑𝑎𝑑𝑗 = Temperature in degrees Celsius
𝛼 = Elevation in thousands of feet
𝜔 = Maximum aircraft gross takeoff weight in thousands of pounds

Table 17: Climb gradient 𝝉 regression coefficients and adjusted R2

 𝛽0 𝛽1 𝛽2 𝛽3 Adj R2

C-17 1991 0.5571 -28.90 -3.262 0.9853

𝐺𝑊 = 𝜏−𝛽0−𝛽1𝜑𝑎𝑑𝑗−𝛽2𝛼
𝛽3

 (46)

94

Figure 34: C-17 maximum gross takeoff weight vs climb gradient 𝝉

 Although airfields can be filtered based on departure obstacles using the maximum gross

takeoff weight available at a given airfield, the level of nodal reduction is relatively modest. For

example, if we were to remove all airfields unable of achieving the average maximum gross

takeoff weight for the C-17 of 440,000 pounds, then only 22 airfields or 0.41 percent would be

removed. In addition, other runways might be available at the airfield, which have a lower climb

gradient then the maximum for the airfield. Using the lowest climb gradient runway would

result in an even smaller nodal reduction. Despite the inherent weakness in using climb gradient

information for filtering, it does provide critical information for route value determination.

 Diplomatic clearances

 The final airfield characteristic heuristic for nodal reduction is the diplomatic clearance

heuristic. Sere (2005) listed diplomatic relations with the host country as one of his six major

factors when determining the locations of en route airfields. Some airfields are located in

Jackson Hole

300

350

400

450

500

550

600

200 300 400 500 600 700 800

Max
Aircraft
Gross

Takeoff
Weight in
1,000s of
Pounds

Climb Gradient in Feet per NM

95

countries where political considerations make it difficult to obtain a diplomatic clearance for

aircraft to enter that country. If a decision maker decides that certain countries are not politically

viable, then the airfield nodes in those countries can be removed from consideration in route

generation.

 There are airfields in several countries that are not optimal for selection as en routes. The

reasons these countries lack value often arises from the political sensitivities involved. Figure 35

shows the percentage impact of removing these countries from the set of available en route

airfields. The total reduction from removing these airfields is 5.6 percent. The technique of

removing airfields based on political sensitivities can increase the speed of computation of

routing alternatives, but eliminates potential high value routes. Use of the technique should be

limited to only those countries where the use of en route airfields is politically untenable.

Figure 35: Politically sensitive countries as percentage of total

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

Venezuela Iran Russia China Mongolia North Korea

% of
Total
DAFIF

Airfields

Politically Sensitive Countries

96

Combined nodal reduction

 Combining all nodal reduction heuristics results in significant overall nodal reduction.

For example, starting with 5,342 airfields and filtering out airfields whose longest runway is less

than the C-17 runway length minimum of 3,500 feet results in 5,010 airfields. After filtering on

runway length, we filtered on the C-17 minimum runway width of 90 feet which returned only

4,549 airfields. Following the runway width filter, all airfields with a maximum effective

runway length less than 5,000 feet were removed, ending with 3,725 airfields. The next filter

applied is the pavement strength filter removing all airfields which cannot support a 500,000

pound gross weight takeoff or less, bringing the total number of airfields remaining to 2,581.

The final airfield characteristic heuristic applied is the country heuristic. Removing airfields

from Russia, China, Iran, Venezuela, Mongolia and North Korea leaves 2,427 airfields. Use of

these combined heuristics culminates in an over 50% nodal reduction.

 The difference between applying the cutoff distance model to the set of 2,427 airfields

contrasted against the original 5,342 airfields for each of the 100 OD pairs from Table 13 can be

seen in Figure 36. Note the significant airfield reduction at higher distances. This nodal

reduction is achieved without the use of the total distance multiple. If a decision maker wants to

select among a given number of alternatives, a given n and max k can provide that desired

number. From the potential en route airfields for a given requirement, only the top ranked by

total distance multiple can be selected as primary en route airfields to achieve the desired overall

number of alternatives. For each primary en route airfield, it is also possible to select the top

number of secondary en route airfields using total distance multiple to meet the targeted number

of alternatives.

97

Figure 36: Impact of combined heuristics on en route airfield reduction

Speed and Accuracy

There is a tradeoff using nodal reduction between speed and accuracy. As nodes are

removed from consideration, speed is increased but accuracy has the potential to decline. To

understand the extent of this tradeoff for the developed heuristics, 27 OD pairs were selected at

regular spaced distance intervals. The assumptions for the “with nodal reduction” technique

include the selection of the C-17 as the MDS, a 7,000 feet minimum effective runway length, a

minimum pavement strength of 460,000 pounds, a maximum number of 200 primary airfields

and a maximum number of 20 secondary airfields. This was contrasted against using all nodes

within the initial “eye shape” formed between source and destination. Due to RAM limitations

of the workstation for the “without nodal reduction” technique, the number of legs for analysis

was limited to three. The “with nodal reduction” technique was never limited by RAM for any

OD pair tested. The maximum number of legs coded for in the algorithm was five.

The nodal reduction techniques for the sample resulted in 99.44% route planning cargo

throughput accuracy using only 4.26% of the computation time. 100% accuracy could have been

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2000 4000 6000 8000 10000

Number
 of

En route
Airfields

Distance (NM)

5,342 Airfields
2,427 Airfields

98

achieved by reducing the minimum effective runway length to 5,000 feet and increasing the

maximum number of secondary airfields to 35. Of the 27 OD pairs computed for using both the

“with nodal reduction” and “without nodal reduction” techniques, 22 selected the exact same

route for optimal cargo throughput. Four of the “with nodal reduction” routes with lower cargo

throughput were due to the removal of airfields with effective runways lower than 7,000 feet.

The final “with nodal reduction” route with lower cargo throughput was lower due to the limit on

the number of secondary airfields to 20.

The impact of nodal reduction on speed can be seen in Figure 37. Using nodal reduction,

the longest time was under 7 seconds and without using nodal reduction, the longest time was

over 4 minutes. The run that resulted in over 4 minutes computed 680,191 routes for

comparison. RAM limitations prevented analysis beyond this point. Reduction in computation

time increased with OD pair distance. The longest distance run for “with nodal reduction” took

only 2.4% of the computation time of “without nodal reduction.” The average time reduction

was over 96% for the 27 OD pairs.

Figure 37: Time Comparison for Route Analysis

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000

Seconds

Distance NMs

With Nodal
Reduction

Without Nodal
Reduction

99

 The impact of nodal reduction on accuracy can be seen in Figure 38. The level of

accuracy for the analysis achieved cargo throughputs that were on average 99.4% of the optimal

level set by the “without nodal reduction” case.

Figure 38: Cargo Throughput of Optimal Route Analysis

Conclusion

 Nodal reduction can result in an over 95% decrease in computation time for less than a

one percent loss in accuracy. This tradeoff between speed and accuracy can be altered as the

situation dictates. Certain potential alternatives that are eliminated are of sufficiently low value

that they are not worthy of consideration. In this situation, computation speed is attained without

sacrificing the quality of the decision being made. Many situations require rapid routing

analysis. These time sensitive situations can occur from a humanitarian crisis, a natural disaster

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000

Cargo Throughput
KLbs

Per Day

Distance NMs

With Nodal
Reduction

Without Nodal
Reduction

100

or a military conflict. After the initial routes are developed and scheduled, the tradeoff between

speed and accuracy can shift to accuracy as time allows for more extensive computation.

 Upon completion of nodal reduction and route creation, routes can be ranked on the basis

of cargo throughput, fuel efficiency, time or cost. Route selection can then be easily performed

to optimize enterprise airlift on any of these metrics. The airfields in the top alternatives might

potentially be enhanced to improve pavement strength, runway length, fueling infrastructure,

material handling equipment or maintenance capabilities. Should certain airfield nodes become

unavailable due to a working Maximum On the Ground (MOG) limitation, inclement weather or

airfield damage, the next optimal alternative can easily be selected. In addition, given the set of

top ranked routes, the impact of aircraft type, crew complement, staging and trans-load on cargo

throughput and fuel efficiency can be assessed. Nodal reduction is the critical foundation that

enables route creation and assessment for the SAP.

101

V. Methodology

 The first article established what is of airlift value and aided understanding of the metrics

that could be utilized to assess that value. The second article used Value Focused Thinking

(VFT) to associate value with a given flight distance to enable the creation of a distance cutoff

model. The third article used a set of heuristics to reduce the set of selected airfields to only

those airfields that have the best chance to create high value routes. Using the mathematical

models developed from these three articles and the decision maker preferences on the tradeoff

between accuracy and speed, routing alternatives can be created.

Route Alternative Generation

 The algorithm used for route alternative generation and analysis was developed in

Javascript and can be seen in Appendix A. The name of the function is “BuildRoutes().” The

basic method involves using the set of primary airfields and each primary airfield’s associated set

of secondary airfields as described in the third article. Initially we increment through the desired

number of stops starting at zero and proceeding to the user selected maximum. For the code

created, that maximum was limited to four stops. This was chosen based on the C-17. Since

optimal value distance for the C-17 is approximately 2,000 NMs and the largest randomly

selected OD pair distance was 10,000 NMs, four stops would provide high valued alternatives

for airfields that are near antipodal on the globe.

For every route, feasibility is addressed initially. Max range zero payload is calculated

for the aircraft type selected. If any sortie on the route has a distance in excess of that max

range, then that route is not created. Starting at zero stops, the requirement OD pair builds the

zero stop route. For one stop routes, a loop is set up for every airfield in the primary airfield set.

For each primary airfield, two sorties are built; one from the origin to the selected primary

102

airfield and one from the selected primary airfield to the destination. For two stop routes, two

loops are established. The outer loop increments through primary airfields and the inner loop

increments through the set of secondary airfields associated with that primary. For each primary

and secondary airfield pair, three sorties are built; one from the origin to the primary, one from

the primary to the secondary and one from the secondary to the destination.

For three stop routes, three loops are established. The outer loop increments through

primary airfields, the intermediate loop increments through the set of secondary airfields

associated with the primary airfield and the inner loop increments through the set of secondary

airfields associated with the primary airfield that has the same ID as the secondary airfield of the

intermediate loop. For each set of primary and two secondary airfields, four sorties are built; one

from origin to primary, one from primary to secondary, one from secondary to tertiary and one

from tertiary to destination. This process can be repeated until the number of stops established

by the decision maker is reached.

After feasibility is established and the airfields that make up the route are selected. Each

sortie’s parameters are established using the “FuelConsumedIterationGrossWeightFixed()”

prototype function of the Aircraft object as seen in Appendix B. This function is based off of the

algorithm and regressions established in the second article. Sortie parameters include operating

weight; fuel for start, taxi and takeoff; time, distance and fuel for climb; takeoff gross weight;

payload; altitude; ramp fuel; time, distance and fuel en route; Mach and true airspeed en route;

time, distance and fuel for descent; and the time and fuel for the approach. Altitude selected is

optimal for the given takeoff gross weight. Sortie parameters are stored in a sortie object in

Appendix A that also includes the “From” airfield id, “To” airfield id, total distance, total time,

total fuel and cargo throughput. Total distance is a sum of climb, en route and descent distances.

103

Total time is a sum of climb, en route, descent and approach times. Total fuel is a sum of fuel

for start, taxi and takeoff, climb, en route, descent and approach fuel. Cargo throughput in the

sortie object is only calculated if trans-load operations are planned. The equation utilized is

similar to Equation 28 and is shown in Equation 47. The actual algorithm can be seen in the

Aircraft object prototype function “CargoThroughputTransload()” of Appendix B.

𝐾𝑙𝑏𝑠
𝐷𝑎𝑦

= 12∗𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑀𝑎𝑥∗𝑆𝑜𝑟𝑡𝑖𝑒𝑠
𝑆𝑜𝑟𝑡𝑖𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

 (47)

All of the sortie instances are stored in an array of sorties called srtArr[]. This sortie

array is attached to a route object in Appendix A that also includes the number of stops on the

route, total distance, delivery time, cycle time, maximum payload without trans-load, cargo

throughput, cargo throughput for a planned payload, fuel efficiency and fuel efficiency for a

planned payload. Total distance is the sum of the sortie total distances. Delivery time is based

off of the Aircraft object prototype function “RouteDeliveryTimeCalculator()” in Appendix B

and is dependent on crew complement, staging and trans-load decisions. Cycle time is based off

of the Aircraft object prototype function “RouteCycleTimeCalculator()” in Appendix B and is

dependent on crew complement, staging and trans-load decisions.

Maximum payload without trans-load is the minimum of all the sortie payloads on that

route. Cargo throughput and cargo throughput for planned payload are dependent on whether

trans-load operations are selected. If trans-load operations are selected, then Equation 48 is used

with i representing the ith sortie and n representing the total number of sorties on that route. If

trans-load operations are not selected Equation 49 is used with max payload without trans-load

and route cycle time described above.

104

𝑅𝑜𝑢𝑡𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑇𝑟𝑎𝑛𝑠𝑙𝑜𝑎𝑑 𝑖𝑛 𝐾𝑙𝑏𝑠
𝐷𝑎𝑦

= 𝑀𝑎𝑥(𝑆𝑜𝑟𝑡𝑖𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖)

∑ 𝑀𝑎𝑥(𝑆𝑜𝑟𝑡𝑖𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖)
𝑆𝑜𝑟𝑡𝑖𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖

𝑛
𝑖=0

 (48)

𝑅𝑜𝑢𝑡𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑖𝑛 𝐾𝑙𝑏𝑠
𝐷𝑎𝑦

= 24∗𝑀𝑎𝑥 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑇𝑟𝑎𝑛𝑠𝑙𝑜𝑎𝑑
𝑅𝑜𝑢𝑡𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

 (49)

Fuel efficiency used when comparing routes is similar to the FEI from the first article. It

is the ratio of the cargo throughput per day achievable on the route to the fuel consumed per day.

The amount of fuel consumed per day for trans-load operations is calculated using the Aircraft

object prototype function “DailyFuelConsumptionTrans()” in Appendix B and is based off the

sortie array, augmented crew and staging decision. Calculations for fuel efficiency and fuel

efficiency for a planned payload are also dependent on whether trans-load operations are

selected. If trans-load operations are selected, then Equation 50 is used with route cargo

throughput trans-load from Equation 48 and route fuel trans-load from above. If trans-load

operations are not selected, Equation 51 is used with route cargo throughput from equation 49, n

representing the total number of sorties, i representing the ith sortie on that route and route cycle

time as described above.

𝐹𝑢𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑇𝑟𝑎𝑛𝑠𝑙𝑜𝑎𝑑 = 𝑅𝑜𝑢𝑡𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑇𝑟𝑎𝑛𝑠𝑙𝑜𝑎𝑑
𝑅𝑜𝑢𝑡𝑒 𝐹𝑢𝑒𝑙 𝑇𝑟𝑎𝑛𝑠𝑙𝑜𝑎𝑑

 (50)

𝐹𝑢𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑅𝑜𝑢𝑡𝑒 𝐶𝑎𝑟𝑔𝑜 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
24∗2∗∑ 𝑆𝑜𝑟𝑡𝑖𝑒 𝐹𝑢𝑒𝑙𝑖

𝑛
𝑖=0

𝑅𝑜𝑢𝑡𝑒 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

 (51)

105

Route Comparison

 Each route object instance is then stored in an array called routes[]. The routes in the

array have several measures over which they can be sorted to ascertain the optimal value for that

measure. These measures include distance, maximum payload, cycle time, cargo throughput for

maximum payload, cargo throughput for a planned payload, fuel efficiency for maximum

payload and fuel efficiency for a planned payload. Out of these measures, two are of particular

importance. This was recognized in the weightings of the value model of the second article. The

two measures of greatest importance are cargo throughput and fuel efficiency.

 The route alternative generation requires several selections by the user that can influence

the results. These selections include the aircraft type, crew complement, staging of crews and

trans-load operations. The impact of these selections on cargo throughput and fuel efficiency

will be examined in more detail. To simplify analysis, out of the 100 OD pairs from the third

article, 27 OD pairs were selected at evenly spaced distances. In addition, several commonly

travelled routes by Air Mobility Command are examined with the route analyzer for managerial

implications.

106

VI. Results

 Analysis of the routes was performed by selecting the top route for a given OD pair on

the basis of cargo throughput. The cargo throughput for that top route was recorded. The top

route was then selected based on fuel efficiency and that fuel efficiency was recorded. To

calculate the top route, a common set of assumptions were used. These assumptions include an

effective runway length greater than 5,000 feet, a minimum actual runway length and width

greater than that aircraft’s regulation minimum, CFL computed based on the aircraft’s maximum

possible gross takeoff weight, runway strength capable of supporting that aircraft’s maximum

possible gross takeoff weight, a maximum of 200 primary airfields, a maximum of 20 secondary

airfields for each primary and a maximum of 5 sorties.

Using these base assumptions, cargo throughput and fuel efficiency were analyzed by

varying aircraft type, crew complement, staging and trans-load. The aircraft types that were

contrasted include the C-5B, C-17A and C-130J. For the crew complement, staging and trans-

load analysis, the C-17 was the aircraft type that was selected. The crew complement was either

normal or augmented. Staging could be either with or without staging. With staging would

require crews to be staged at every airfield where a crew would require crew rest in the without

staging case. Trans-load was either with or without trans-load. With trans-load assumes mission

handling equipment and a cargo yard are available at every airfield.

Aircraft Type

 The results from the aircraft type analysis for cargo throughput can be seen in Figure 39.

As distance increases, the top route’s cargo throughput declines. This decline appears steep

initially. Yet, it becomes more linear after 4,000 NMs. The cargo throughput of the top route

107

assumes the aircraft can take its maximum allowable cargo weight. If the load factor is not

maximized, then the cargo throughput is significantly diminished. The C-5 appears to have the

greatest capacity for cargo throughput. Yet, this capacity fails to take into account the aircraft’s

mission capable rate. If mission capable rates of 55%, 85% and 75% for the C-5, C-17 and C-

130 respectively are taken into account then the cargo throughput would be adjusted as seen in

Figure 40. Note that with mission capable rates included, the C-17 provides the greatest capacity

for cargo throughput.

Figure 39: MDS cargo throughput and distance

0

50

100

150

200

250

0 2000 4000 6000 8000 10000

Cargo
Throughput

 KLbs per
 Day

Distance (NMs)

C5

C17

C130

108

Figure 40: MC rate adjusted MDS cargo throughput and distance

 The relationship between the top route’s cargo throughput and distance is very similar to

the relationship between the top routes fuel efficiency and distance as can be seen in Figure 41.

The difference is that the three MDSs differ very significantly on cargo throughput, but are far

more similar when it comes to fuel efficiency. The C-130 just barely edges out the C-5 and C-17

with the C-5 being the least fuel efficient, assuming 100% load factors. If the C-5 and C-17 are

not using their full load factor, then that gives an increasing edge to the C-130 in fuel efficiency.

For example, given 6 pallets weighing 5,000 pounds moving from Dover AFB (KDOV) to

Ramstein AB (ETAR), the C-5, C-17 and C-130 would have a fuel efficiency of 0.07, 0.09 and

0.29 respectively. The C-130 would triple both a C-5 and C-17 in fuel efficiency given only 6

pallets weighing 30,000 pounds.

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000

Cargo
Throughput

KLbs per
Day

Distance (NMs)

C5

C17

C130

109

Figure 41: Fuel efficiency and distance

Crew Complement

Crew complement had a minor effect on cargo throughput as can be seen in Figure 42,

and had a negligible effect on fuel efficiency. The largest increase of 36% in cargo throughput

was seen on the LIBP to HCMH OD pair. The average increase is 14.4%. Augmenting crews is

an option for increased cargo throughput, but if crew availability is limited, greater cargo

throughput gains would likely be achieved through staging.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2000 4000 6000 8000 10000 12000

Fuel
Efficiency

Distance (NMs)

C5

C17

C130

110

Figure 42: Crew complement cargo throughput and distance

Staging

 No other factor had as great an impact on cargo throughput as staging. Simply by

swapping crews when a crew runs out of crew duty day, cargo throughput capability increases on

average 101.4% as seen in Figure 43. This doubling of cargo throughput decreases closure

times, increases aircraft availability and enhances operational flexibility. Staging requires

additional aircrew management which can add to the complexity of a mission. Staging has no

impact on fuel efficiency for the increase in cargo throughput is offset by the increase in fuel

consumption.

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000

Cargo
Throughput

KLbs per
 Day

Distance (NMs)

Augmented

Normal

111

Figure 43: Staging cargo throughput and distance

Trans-load

 Trans-load operations have relatively minor effects on cargo throughput as shown in

Figure 44. Many times trans-load operations have a negative impact on cargo throughput due to

the increased ground time associated with cargo loading and unloading. Only a third of the

sample had trans-load result in an increase in fuel efficiency. When that increase occurred it was

on average 8%. If the amount of fuel that goes into performing trans-load operations is included,

then most trans-load operations would be less fuel efficient.

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000

Cargo
Throughput

KLbs per
Day

Distance (NMs)

No Staging

Staging

112

Figure 44: Trans-load cargo throughput and distance

Air Mobility Command Routes

 Two routes were analyzed using the algorithms/models from the methodology and the

three articles. These routes only selected airfields that are over 7,000 feet in effective runway

length and that have pavement strong enough to handle the max gross takeoff weight for the

aircraft. The aircraft selected for this analysis is the C-17. The first route is an East bound route

coming from Dover AFB (KDOV) on the East coast and going to Bagram AB (OAIX) in

Afghanistan. The second route is a West bound route coming from Travis AFB (KSUU) on the

West coast and going to Osan AB (RKSO) in Korea. Since the actual requirements may not

allow for the maximum payload to be loaded, the top route for lighter pallet loads are also

displayed.

 Table 18 contrasts the common AMC route going East of Dover (KDOV) to Ramstein

(ETAR) to Bagram (OAIX) against the algorithm calculated most fuel efficient route of Dover

(KDOV) to Goose Bay (CYYR) to Reykjavik (BIKF) to Lulea (ESPA) to Ufa (UWUU) to

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000

Cargo
Throughput

KLbs per
Day

Distance (NMs)

No Transload

Transload

113

Bagram (OAIX). These routes can also be visually compared in Figure 45 with the AMC route

in orange and the fuel efficient route in red. The top fuel efficient route carries a maximum

payload twice that of the regular AMC route, airlifts 73% more cargo throughput, is 73% more

fuel efficient and is 45% cheaper per pound delivered. This assumes being able to load 9,494

pounds per pallet position. If only 6,000 pounds per pallet position could be loaded, then the

improvement is reduced. The 6K per pallet Dover (KDOV) to Trois-Rivieres (CYRQ) to Evenes

(ENEV) to Bagram (OAIX) route carries 23 thousand pounds more cargo per trip, achieves 18%

more cargo throughput, is 27% more fuel efficient and is 21% cheaper per pound of cargo

delivered.

Table 18: Top route comparison going East

East Coast To Afghanistan

Route Max
Payload

Max
Pounds Per

Pallet
Cargo
Thru

Cycle
Time

Fuel
Efficiency

Cost
Per

Pound

AMC Route KDOV ETAR
OAIX 85.38 4,743 22 95 0.15 $3.06

Top Fuel
Efficiency

KDOV CYYR
BIKF ESPA

UWUU OAIX
170.9 9,494 38 109 0.26 $1.69

% Change from Current 100% 100% 73% 15% 73% -45%

8K Pallet
Top Fuel Eff

KDOV KPQI
BIKF UUEE

OAIX
150.74 8,374 35 104 0.24 $1.84

6K Pallet
Top Fuel Eff

KDOV CYRQ
ENEV OAIX 108.31 6,017 26 99 0.19 $2.41

114

Figure 45: East route (orange) and top fuel efficient route (red)

 Table 19 contrasts the AMC route going West of Travis (KSUU) to Hickam (PHIK) to

Guam (PGUA) to Osan (RKSO) against the most fuel efficient route from the analysis of Travis

(KSUU) to Terrace (CYXT) to Shemya (PASY) to Osan (RKSO). The top fuel efficient route as

shown in Figure 46 carries 50% more cargo per trip, delivers 89% more cargo throughput, is

100% more fuel efficient and is 49% cheaper per pound delivered. This assumes being able to

load 7,556 pounds per pallet position. If only 6,000 pounds per pallet position could be loaded,

then the improvement is reduced. The 6K per pallet Travis (KSUU) to Shemya (PASY) to Osan

(RKSO) route carries 22 thousand pounds more cargo per trip, achieves 67% more cargo

throughput, is 85% more fuel efficient and is 45% cheaper per pound of cargo delivered. Both

east and west coast routes can significantly increase their cargo throughput per aircraft by

establishing staging locations for aircrews along the routes.

115

Table 19: Top route comparison going West

West Coast To Korea

Route Max
Payload

Max
Pounds

Per Pallet
Cargo

Throughput
Cycle
Time

Fuel
Efficiency

Cost
Per

Pound

AMC
Route

KSUU PHIK PGUA
RKSO 90 5,000 18 119 0.13 $3.43

Top Fuel
Efficiency

KSUU CYXT PASY
RKSO 136 7,556 34 95 0.26 $1.74

% Change from Current 51% 51% 89% -20% 100% -49%

6K Pallet
Top Fuel

Eff
KSUU PASY RKSO 112 6,222 30 89 0.24 $1.90

Figure 46: West route (orange) and top fuel efficient route (red)

116

VII. Conclusions

 Given a set of cargo requirements and a set of aircraft for the SAP, a critical first step is

to determine the aggregation of those requirements for each aircraft. Ascertaining cargo weight

and volume limitations must precede cargo aggregation. Yet, cargo weight limits are dependent

on the route from the requirement origin to destination. This route selection is therefore an

essential step before aggregating cargo. Since route analysis is a fundamental foundation for

calculation of the SAP, establishing what is of value when comparing routes becomes a

necessity. “Competitive advantage and aviation fuel efficiency” examined several metrics in an

operational setting for the evaluation of airlift and assessed their inter-relationships. This paper

highlighted the importance of fuel efficiency as a measure for airlift value.

 “Distance value model for nodal reduction of the strategic airlift problem” developed

a method for associating value with distance. The concept suggested that each aircraft type has

unique capabilities that make the flight of certain distance regimes more valuable than others. If

certain distance regimes are of significantly low value, perhaps airfields within those distance

regimes do not have to be included when comparing routes. This value model was later

validated by comparison of the top routes by cargo throughput and fuel efficiency. Despite the

success of the value model, route generation was too sluggish and the number of potential route

combinations became untenable. This highlighted the need for further heuristic techniques to

increase computation speed without the loss of valuable alternatives.

 The solution to the speed issue was resolved with “Nodal reduction heuristics applied to

route generation for enterprise airlift evaluation.” This offered several techniques to remove

airfields from the set of potential airfields for route generation. These techniques worked well

while simultaneously achieving other airlift value not established in the distance value model.

117

Computation times were reduced over 95% and all OD pairs that previously would fail due to

reaching RAM limitations, could now be analyzed. Nodal reduction made route generation

possible. Given the set of possible routes, the primary measure of effectiveness, cargo

throughput, and the primary measure of efficiency, fuel efficiency, for each route was calculated.

This enabled the optimal route for each measure to be selected.

 The impact of distance, aircraft type, crew complement, staging and trans-load on cargo

throughput and fuel efficiency highlighted the tradeoffs involved. The concept that increasing

distance reduces cargo throughput is not surprising, but given a specific distance and aircraft

type, an airlift planner could very rapidly assess the upper limit for cargo throughput and the

lower limit for closure time. Of the three MDS aircraft types analyzed, the C-17 is the obvious

mode of choice for maximizing cargo throughput. When assessing the tradeoff between using

augmented crews or setting up staging operations, the choice to set up staging operations for

increased cargo throughput is apparent. Finally, trans-load operations often failed to outperform

no trans-load operations. This surprising finding was primarily due to increased ground times.

 Applying the algorithm to some real world operational examples, opportunities to

enhance cargo throughput and fuel efficiency or reduce cost were abundant. In both the East and

West cases the current operational tendency was to plan routes at significantly lower latitudes

than the great circle path between origin and destination. This is potentially the result of the

distortion associated with a two dimensional projection of the globe. The optimal number of

sorties on a route is associated with the distance involved and the payload. For the C-17, flying

direct from Dover (KDOV) to Ramstein (ETAR) is only effective and efficient if the payload is

limited to 94 thousand pounds or 5,222 pounds per pallet position. If it is possible to load more

than that, then it is more effective to fly KDOV to Gander (CYQX) to ETAR.

118

The route algorithm calculates the maximum payload possible. If the aircraft can load

cargo to that amount, then that is the most effective and efficient operationally. If the cargo is

unable to be aggregated to that amount due to sub-volume constraints or “available to load”

constraints, then either the flight should be delayed to make aggregation possible or the route

algorithm should be run again with the planned load to determine the new optimal route.

Delaying to make aggregation possible is a very difficult decision. It has the potential to vastly

improve efficiency but comes at the risk of effectiveness.

The abstractions provided by this research help identify opportunities for improvements

in efficiency and effectiveness. Several factors that affect the value of given routing alternatives

that are not captured in this analysis include the actual flight routing and altitude profile on a

sortie, the actual flight winds/weather experienced on a sortie and tail specific fuel consumption

for a sortie. Each of these factors represent an area for future research to more accurately assign

value to a given route alternative.

With the optimal route payload provided, the stage is set for the development of both a

cargo aggregation algorithm and an aircraft selection algorithm. Cargo aggregation is both an

aerial port “pallet” consideration and a hub and spoke consideration. It involves cargo currently

in information systems and anticipated cargo based on historical trends. It is tightly tied to

customer needs by their “earliest arrival date” and “required delivery date.” Many facets of the

cargo aggregation problem are tied to aircraft type and specific tail selection, including pallet

positions available and the goal of inactive mile or “flying empty” minimization. These cargo

aggregation and aircraft selection algorithms can then feedback new OD pairs with planned

payloads back into the algorithms presented in this dissertation for enhanced route optimization.

119

Appendix A: Nodal Reduction and Route Generation Algorithms

primaryAirfield Object
Property Description

id Identification.
distFromPrim Distance in NMs from origin airfield to primary airfield.
azFromPrim Azimuth in degrees from origin airfield to primary airfield.
altFromPrim Altitude in thousands of feet from origin airfield to primary airfield.
distPrimTo Distance in NMs from primary airfield to destination airfield.
azPrimTo Azimuth in degrees from primary airfield to destination airfield.
altPrimTo Altitude in thousands of feet from primary airfield to destination airfield.
totalDist Total distance from origin to primary to destination in NMs.

maxPCNgw Maximum aircraft gross weight for given PCN.

// function that creates the primaryAirfield() object
function primaryAirfield(id, distFromPrim, azFromPrim, altFromPrim, distPrimTo, azPrimTo, altPrimTo,
 totalDist, maxPCNgw) {
 this.id = id;
 this.distFromPrim = distFromPrim;
 this.azFromPrim = azFromPrim;
 this.altFromPrim = altFromPrim;
 this.distPrimTo = distPrimTo;
 this.azPrimTo = azPrimTo;
 this.altPrimTo = altPrimTo;
 this.totalDist = totalDist;
 this.maxPCNgw = maxPCNgw;
}

secondaryAirfield Object
Property Description

id Identification.
selAfldsPos The id of the primary airfield that is the same airfield as the secondary.
distPrimSec Distance in NMs from primary to secondary airfield.
azPrimSec Azimuth in degrees from primary to secondary airfield.
altPrimSec Altitude in thousands of feet from primary to secondary airfield.
distSecTo Distance in NMs from secondary airfield to destination airfield.
azSecTo Azimuth in degrees from secondary airfield to destination airfield.
altSecTo Altitude in thousands of feet from secondary airfield to destination airfield.
totalDist Total distance from primary to secondary to destination in NMs.

// function that creates the secondaryAirfield() object
function secondaryAirfield(id, selAfldsPos, distPrimSec, azPrimSec, altPrimSec, distSecTo, azSecTo,
 altSecTo, totalDist) {
 this.id = id;
 this.selAfldsPos = selAfldsPos;
 this.distPrimSec = distPrimSec;
 this.azPrimSec = azPrimSec;
 this.altPrimSec = altPrimSec;
 this.distSecTo = distSecTo;
 this.azSecTo = azSecTo;
 this.altSecTo = altSecTo;
 this.totalDist = totalDist;
}

120

route Object
Property Description
sortieArray Array of sortie objects
numStops Number of stops along the route.
totalDist Total distance along the route in NMs.

deliveryTime Delivery time from crew show at origin to landing at destination in hours.
cycleTime Cycle time from takeoff at origin to next takeoff at origin in hours.

maxPayloadNoTrans Maximum payload without transload operations which is the minimum of all
the maximum payloads in the sortieArray object.

cargoThroughput Cargo throughput in Klbs of cargo per day.
fuelEfficiency Fuel efficiency which is cargo throughput per day over fuel consumed per day.

cargoThruPlanPay Cargo throughput in Klbs of cargo per day for the planned payload.

fuelEffPlanPay Fuel efficiency which is cargo throughput for the planned payload per day over
fuel consumed for the planned payload per day.

// function that creates the route() object
function route(sortieArray, numStops, totalDist, deliveryTime, cycleTime, maxPayloadNoTrans,
cargoThroughput, fuelEfficiency, cargoThruPlanPay, fuelEffPlanPay) {
 this.sortieArray = sortieArray;
 this.numStops = numStops;
 this.totalDist = totalDist;
 this.deliveryTime = deliveryTime;
 this.cycleTime = cycleTime;
 this.maxPayloadNoTrans = maxPayloadNoTrans;
 this.cargoThroughput = cargoThroughput;
 this.fuelEfficiency = fuelEfficiency;
 this.cargoThruPlanPay = cargoThruPlanPay;
 this.fuelEffPlanPay = fuelEffPlanPay;
}

sortie Object
Property Description
fromIdent Identity of the origin.

toIdent Identity of the destination
distance Total distance in NMs for that sortie from origin to destination.

cargoThroughput Cargo throughput in Klbs of cargo per day for that sortie.
enrouteTime Time from takeoff to landing in hours.
enrouteFuel Total fuel from takeoff to landing in Klbs.
sortieParam An instance of the sortieParam object from the AircraftMDS.js code.

// function that creates the sortie() object
function sortie(fromIdent, toIdent, distance, cargoThroughput, enrouteTime, enrouteFuel, sortieParam) {
 this.fromIdent = fromIdent;
 this.toIdent = toIdent;
 this.distance = distance;
 this.cargoThroughput = cargoThroughput;
 this.enrouteTime = enrouteTime;
 this.enrouteFuel = enrouteFuel;
 this.sortieParam = sortieParam;
}

121

Route Functions
Name Inputs Description

DetermineProgress () Displays the progress bar.

AlterAircraft
FilterParameters ()

When MDS dropdown is changed, adjusts parameters
in their respective input boxes to selected MDS

appropriate values.

SortRoutes () Sorts the routes based on the parameter selected and
displays the information.

UpdateRteString1 (rteString) Places the selected route string in the first route for
comparison.

UpdateRteString2 (rteString) Places the selected route string in the second route for
comparison.

CreateIranPoly () Creates the polygon for Iranian restricted airspace.
CreateRussiaPoly () Creates the polygon for Russian restricted airspace.

AddWaypointToPoly () Adds waypoint to restricted airspace polygon.
ClearPoly () Clears the restricted airspace polygon of all waypoints.

ValidateRouteInput () Validates all input fields.

FilterAirfields
ComputePrimSec
AndBuildRoutes

()

Calls the AirfieldNodalReduction function to filter
airfields and select the set of primary airfields. Calls

the DetermineSecondaryAirfields function to calculate
the set of secondary airfields for each primary. Calls

either the BuildRoutes or BuildRoutesRestAS
functions to build the proper routes.

AirfieldNodal
Reduction

(selectMDS,
topNumAflds)

Utilizes the 2D Array selectedAirfields to store all
primaryAirfield objects in the 0 position of the set of

arrays. The primary airfields are culled from all
airfields using country, effective runway length,

runway width, pavement strength, cutoff distance and
finally total distance multiple filters

IsPavement
StrengthAnomaly

(selectMDS, afldID,
distFromEnr,
distFromTo)

Returns boolean true if the pavement strength of the
selected airfield is more than 10% stronger than origin

airfield and the airfield is within minimum cutoff
distance.

HasRunwayThatIs
LongWideAnd
StrongEnough

(selectMDS, airfield,
minEffRwyLen,

gwCFLave,
gwPaveMin)

Returns boolean true if the airfield has a runway that
meets runway length, width and pavement strength

requirements.

EffectiveRunway
Length

(selectMDS, gw,
actRwyLength,

latitude, elevation)
Returns the effective runway length in feetgiven

aircraft gross weight, latitude and elevation.

IsCountryRemove
Airfield (afld) Returns boolean true is airfield is in one of the

countries selected for removal.

IsCutDistMod
RemoveAirfield

(selectMDS,
distFromEnr,

distEnrTo,
distFromTo)

Returns boolean true if airfield is within cutoff
distance of origin or destination.

122

Name Inputs Description

DetermineSecondar
yAirfields

(selectMDS, toIdent,
topNumSecAflds)

Utilizes the 2D Array selectedAirfields to store all
secondaryAirfield objects associated with the
primary airfields in the 0 position of the set of

arrays.

ClearSortBox (sortParam) Treats the sort check boxes like radio buttons so
that only one can be selected at a given time.

DisplayInput () Toggles the display of the input section so the
results can be more easily seen.

BuildRoutes

(selectMDS, fromIdent,
toIdent, maxNumStops,

planPay, augmented,
staging, transload,
numStopForRoute,

numPrimary)

Builds an Array of route objects that consists of an
array of sortie objects. This set of routes represents

all potential route combinations for the set of
primary and associated secondary airfields.

BuildRoutesRestAS

(selectMDS, fromIdent,
toIdent, maxNumStops,

planPay, augmented,
staging, transload,
numStopForRoute,

numPrimary)

Builds an Array of route objects that consists of an
array of sortie objects. This set of routes represents

all potential route combinations for the set of
primary and associated secondary airfields. Allows

for the sortie to go around a restricted airspace.

// global variables
var initSelectAflds = new Array();// initial set of selected airfields

// creates two dimensional array with first position in each row representing primary airfields.
// additional columns of that row represent secondary airfields to the primary
var selectedAirfields = new Array(new Array());
var progressComplete, currentProgress1, currentProgress2;
var progressArray = [{ category: "Calculating Primary and Secondary Airfields",
 percent: 0 }, { category: "Building Routes", percent: 0}];
var numStopForRoute, numPrimary, globalFromIdent, globalToIdent;
var routes = new Array();

// function called for calculation after input data validated. Measures and displays progress
function DetermineProgress() {
 var bar = document.getElementById('progressBar');
 var meter = document.getElementById('meterID');
 var progressMessage = document.getElementById('progressMessage');
 var sortDiv = document.getElementById("sortDiv");
 var routeSummaryDiv = document.getElementById("routeSummaryDiv");
 var routeResultDiv = document.getElementById("routeResultDiv");
 var debugDiv = document.getElementById("debugDiv");

 sortDiv.style.display = "none";
 routeSummaryDiv.style.display = "none";
 routeResultDiv.style.display = "none";

 if (progressArray[0].percent < 100) {
 progressMessage.innerHTML = progressArray[0].category;
 progressMessage.style.display = "inline-block";
 }
 else if (progressArray[0].percent == 100) {
 progressMessage.innerHTML = progressArray[1].category;
 progressMessage.style.display = "inline-block";
 bar.style.width = (10 * progressArray[1].percent) + "px";
 meter.style.display = "inline-block";
 }
 FilterAirfieldsComputePrimSecAndBuildRoutes();

123

 var inProgressTimer = setTimeout("DetermineProgress()", 10);
 if (progressComplete) {
 clearTimeout(inProgressTimer);
 meter.style.display = "none";
 progressMessage.style.display = "none";
 }
}

// function called from DetermineProgress that performs 3 primary functions
// 1-filters airfields and determines primary airfields using AirfieldNodalReduction() function
// 2-obtains secondary airfields using DetermineSecondaryAirfields() function
// 2-builds routes using BuildRoutes() function
function FilterAirfieldsComputePrimSecAndBuildRoutes() {
 var mds = document.getElementById("MDS").value;
 var minEffRwyLen = parseFloat(document.getElementById("minEffRwyLen").value);
 var gwCFLave = parseFloat(document.getElementById("gwCFLave").value);
 var gwPaveMin = parseFloat(document.getElementById("gwPaveMin").value);
 var plannedPayload = parseInt(document.getElementById("plannedPayload").value);
 var fromICAO = document.getElementById("searchICAO1").value.toUpperCase();
 var toICAO = document.getElementById("searchICAO2").value.toUpperCase();
 var topNumAflds = parseInt(document.getElementById("topNumAflds").value);
 var topNumSecAflds = parseInt(document.getElementById("topNumSecAflds").value);
 var maxNumLegs = parseInt(document.getElementById("maxNumLegs").value);
 var augmentedCheck = document.getElementById("augmentedCheck").checked;
 var stagingCheck = document.getElementById("stagingCheck").checked;
 var transloadCheck = document.getElementById("transloadCheck").checked;
 var progress2iteration, progress2itMax;
 var selectMDS;
 progressComplete = false;
 switch (mds) {
 case "1":
 selectMDS = C5;
 break;
 case "2":
 selectMDS = C17;
 break;
 case "3":
 selectMDS = C130;
 break;
 default:
 break;
 }
 if (progressArray[0].percent < 100) {
 AirfieldNodalReduction(selectMDS, minEffRwyLen, gwCFLave, gwPaveMin, globalFromIdent,
 globalToIdent, topNumAflds);
 DetermineSecondaryAirfields(selectMDS, globalToIdent, topNumSecAflds);
 routes = [];
 currentProgress1 = 100;
 currentProgress2 = 0;
 numStopForRoute = 0;
 numPrimary = 0;
 }
 else if (progressArray[0].percent >= 100 && progressArray[1].percent < 100) {
 BuildRoutes(selectMDS, globalFromIdent, globalToIdent, maxNumLegs - 1, plannedPayload,
 augmentedCheck, stagingCheck, transloadCheck,
 numStopForRoute, numPrimary);
 if (numStopForRoute == 0)
 numStopForRoute++;
 else if (numPrimary == (selectedAirfields.length - 1)) {
 numStopForRoute++;
 numPrimary = 0;
 }
 else {
 numPrimary++;
 }
 progress2iteration = (numStopForRoute - 1) * selectedAirfields.length + numPrimary;
 progress2itMax = (maxNumLegs - 1) * selectedAirfields.length;
 if (selectedAirfields.length != 0)
 currentProgress2 = parseInt(Math.round((progress2iteration / progress2itMax) * 100));

124

 else
 currentProgress2 = 100;
 }
 else if (progressArray[0].percent >= 100 && progressArray[1].percent >= 100) {
 SortRoutes();
 progressComplete = true;
 currentProgress1 = 0;
 currentProgress2 = 0;

 }
 progressArray[0].percent = currentProgress1;
 progressArray[1].percent = currentProgress2;
}

// function that reduces the number of airfields under consideration using runway length, width, pavement
// strength and minimum cutoff distance
function AirfieldNodalReduction(selectMDS, minEffRwyLen, gwCFLave, gwPaveMin, fromIdent, toIdent,
topNumAflds) {
 var selectThisAirfield = true;
 var GeoCurveFromEnr = 0.0;
 var GeoCurveEnrTo = 0.0;
 var distFromEnr = 0.0;
 var distEnrTo = 0.0;
 var altFromPrim = 0.0;
 var altPrimTo = 0.0;
 var maxPCNtakeoffWeight;
 var GeoCurve = VincentyDistance(airfields[fromIdent].wgs_dlat, airfields[fromIdent].wgs_dlong,
 airfields[toIdent].wgs_dlat, airfields[toIdent].wgs_dlong);
 var distFromTo = GeoCurve.distance / 1852.0;
 var selectedCount = 0;

 initSelectAflds = [];
 selectedAirfields = [];

 for (var i = 0; i < airfields.length; i++) {
 selectThisAirfield = true;
 //Remove airfields that are in countries selected by the user
 if (IsCountryRemoveAirfield(airfields[i]))
 selectThisAirfield = false;

 //Remove airfield without a runway that meets both the greater of minimum runway length and
 //effective runway length and runway width criteria and pavement criteria
 if (!HasRunwayThatIsLongWideAndStrongEnough(selectMDS, airfields[i], minEffRwyLen, gwCFLave,
 gwPaveMin)) {
 selectThisAirfield = false;
 }
 if (selectThisAirfield)
 initSelectAflds.push(i);
 }

 for (var j = 0; j < initSelectAflds.length; j++) {
 selectThisAirfield = true;

 // determine distances from source to en route and en route to destination
 GeoCurveFromEnr = VincentyDistance(airfields[fromIdent].wgs_dlat, airfields[fromIdent].wgs_dlong,
 airfields[initSelectAflds[j]].wgs_dlat,
 airfields[initSelectAflds[j]].wgs_dlong);
 GeoCurveEnrTo = VincentyDistance(airfields[initSelectAflds[j]].wgs_dlat,
 airfields[initSelectAflds[j]].wgs_dlong,
 airfields[toIdent].wgs_dlat, airfields[toIdent].wgs_dlong);
 distFromEnr = GeoCurveFromEnr.distance / 1852.0;
 distEnrTo = GeoCurveEnrTo.distance / 1852.0;

 //Remove airfields that are not in eye shape formed by minimum cutoff distance model
 if (IsCutDistModRemoveAirfield(selectMDS, distFromEnr, distEnrTo, distFromTo))
 selectThisAirfield = false;

 // add fields to selected airfields
 if (selectThisAirfield) {

125

 altFromPrim = selectMDS.OptimumAltitudeMaxGW(distFromEnr, GeoCurveFromEnr.azimuth);
 altPrimTo = selectMDS.OptimumAltitudeMaxGW(distEnrTo, GeoCurveEnrTo.azimuth);
 selectedAirfields.push([]);
 selectedAirfields[selectedCount].push(new primaryAirfield(initSelectAflds[j], distFromEnr,
 GeoCurveFromEnr.azimuth, altFromPrim, distEnrTo,
 GeoCurveEnrTo.azimuth, altPrimTo, distFromEnr + distEnrTo, 0));
 selectedCount++;
 }
 }

 // sort airfields by total distance
 selectedAirfields = selectedAirfields.sort(function (a, b) {
 if (a[0].totalDist > b[0].totalDist)
 return 1;
 else
 return -1;
 });

 // select only the top number of airfields suggested by the user
 if (selectedAirfields.length > topNumAflds) {
 selectedAirfields.splice(topNumAflds, selectedAirfields.length - topNumAflds);
 }

 for (var k = 0; k < selectedAirfields.length; k++) {
 maxPCNtakeoffWeight = 0;
 for (var m = 0; m < airfields[selectedAirfields[k][0].id].runways.length; m++) {
 PCNtakeoffWeight = PCNtoMaxGrossWeight(selectMDS,
 airfields[selectedAirfields[k][0].id].runways[m].pcn);
 if (PCNtakeoffWeight > maxPCNtakeoffWeight) {
 maxPCNtakeoffWeight = PCNtakeoffWeight;
 }
 }
 selectedAirfields[k][0].maxPCNgw = maxPCNtakeoffWeight;
 }
}

// function that returns a Boolean on whether a runway exceeds minimum length and width rqmts for MDS
function HasRunwayThatIsLongWideAndStrongEnough(selectMDS, afld, minEffRwyLen, gwCFLave, gwPaveMin) {
 var isLongWideAndStrongEnough = false;
 var acftRwyLenMin = 0;
 var acftRwyWidMin = 0;

 acftRwyLenMin = selectMDS.minRwyLength;
 acftRwyWidMin = selectMDS.minRwyWidth;

 for (var i = 0; i < afld.runways.length; i++) {
 if (afld.runways[i].rwyLength >= acftRwyLenMin && afld.runways[i].width > acftRwyWidMin) {
 if (EffectiveRunwayLength(selectMDS, gwCFLave, afld.runways[i].rwyLength, afld.wgs_dlat,
 afld.elev) > minEffRwyLen) {
 if (PCNtoMaxGrossWeight(selectMDS, afld.runways[i].pcn) > gwPaveMin)
 isLongWideAndStrongEnough = true;
 }
 }
 }
 return isLongWideAndStrongEnough;
}

// function that returns effective runway length
function EffectiveRunwayLength(selectMDS, gw, actRwyLength, latitude, elevation)
{
 var seaLevelStdDayCFL;
 var airfieldCFL;
 var effRwyLength;
 var airfieldTemp;
 var seaLevelElev = 0.0;
 var stdDayTemp = 15.0;

 //Calculate the airfields temperature
 airfieldTemp = DetermineAverageTemperature(latitude, elevation);

126

 //Calculate the critical field lengths at sea level std day and at the airfield
 seaLevelStdDayCFL = selectMDS.CriticalFieldLength(gw, seaLevelElev, stdDayTemp);
 airfieldCFL = selectMDS.CriticalFieldLength(gw, elevation / 1000.0, airfieldTemp);

 //Calculate the effective runway length
 effRwyLength = actRwyLength * seaLevelStdDayCFL / airfieldCFL;

 return effRwyLength;
}

// function that removes a given airfield if it is in a country that is filtered out
function IsCountryRemoveAirfield(afld) {
 var removeAfld = false;

 var russiaCheck = document.getElementById("russiaCheck");
 var chinaCheck = document.getElementById("chinaCheck");
 var venezuelaCheck = document.getElementById("venezuelaCheck");
 var iranCheck = document.getElementById("iranCheck");

 if (russiaCheck.checked)
 if (afld.icao.substring(0, 2) == "UE" ||
 afld.icao.substring(0, 2) == "UH" ||
 afld.icao.substring(0, 2) == "UI" ||
 afld.icao.substring(0, 2) == "UL" ||
 afld.icao.substring(0, 2) == "UN" ||
 afld.icao.substring(0, 2) == "UO" ||
 afld.icao.substring(0, 2) == "UR" ||
 afld.icao.substring(0, 2) == "US" ||
 afld.icao.substring(0, 2) == "UU" ||
 afld.icao.substring(0, 2) == "UW")
 removeAfld = true;

 if (chinaCheck.checked)
 if (afld.icao.substring(0, 1) == "Z")
 removeAfld = true;

 if (venezuelaCheck.checked)
 if (afld.icao.substring(0, 2) == "SV")
 removeAfld = true;

 if (iranCheck.checked)
 if (afld.icao.substring(0, 2) == "OI")
 removeAfld = true;

 return removeAfld;
}

// function that suggests to remove airfield if it is belowe the cutoff distance
function IsCutDistModRemoveAirfield(selectMDS, distFromEnr, distEnrTo, distFromTo) {
 var removeAfld = false;
 var cutoffDist = 0.0;

 switch (selectMDS) {
 case C5:
 if (distFromTo <= 2300)
 cutoffDist = distFromTo;
 else if (distFromTo > 2300 && distFromTo < 3300)
 cutoffDist = 800;
 else
 cutoffDist = 400;
 break;
 case C17:
 if (distFromTo <= 2200)
 cutoffDist = distFromTo;
 else if (distFromTo > 2200 && distFromTo < 3500)
 cutoffDist = 800;
 else
 cutoffDist = 400;

127

 break;
 case C130:
 if (distFromTo <= 1700)
 cutoffDist = distFromTo;
 else if (distFromTo > 1700 && distFromTo < 2700)
 cutoffDist = 600;
 else
 cutoffDist = 400;
 break;
 default:
 break;
 }

 if (distFromEnr > (distFromTo - cutoffDist) || distEnrTo > (distFromTo - cutoffDist))
 removeAfld = true;

 return removeAfld;
}

// function that determines the secondary airfields
function DetermineSecondaryAirfields(selectMDS, toIdent, topNumSecAflds) {
 var secondaryAirfields = new Array();
 var GeoCurvePrimSec;
 var distPrimSec = 0.0;
 var altPrimSec = 0.0;
 var altSecTo = 0.0;

 //sort primary airfields by distance to destination
 selectedAirfields = selectedAirfields.sort(function (a, b) {
 if (a[0].distPrimTo > b[0].distPrimTo)
 return -1;
 else
 return 1;
 });

 // loop through primary airfields
 for (var i = 0; i < selectedAirfields.length; i++) {
 secondaryAirfields = new Array();
 if (topNumSecAflds > 0) {
 // loop through potential secondary airfields
 for (var j = i + 1; j < selectedAirfields.length; j++) {
 //determine distance from primary to secondary
 GeoCurvePrimSec = VincentyDistance(airfields[selectedAirfields[i][0].id].wgs_dlat,
 airfields[selectedAirfields[i][0].id].wgs_dlong,
 airfields[selectedAirfields[j][0].id].wgs_dlat,
 airfields[selectedAirfields[j][0].id].wgs_dlong);
 distPrimSec = GeoCurvePrimSec.distance / 1852.0;

 //determine distance from secondary to destination
 GeoCurveSecTo = VincentyDistance(airfields[selectedAirfields[j][0].id].wgs_dlat,
 airfields[selectedAirfields[j][0].id].wgs_dlong,
 airfields[toIdent].wgs_dlat,
 airfields[toIdent].wgs_dlong);
 distSecTo = GeoCurveSecTo.distance / 1852.0;

 //determine if within eye shape formed by cutoff distance and add to set of potential
 if (!IsCutDistModRemoveAirfield(selectMDS, distPrimSec, distSecTo,
 selectedAirfields[i][0].distPrimTo)) {
 altPrimSec = selectMDS.OptimumAltitudeMaxGW(distPrimSec, GeoCurvePrimSec.azimuth);
 altSecTo = selectMDS.OptimumAltitudeMaxGW(distSecTo, GeoCurveSecTo.azimuth);
 secondaryAirfields.push(new secondaryAirfield(selectedAirfields[j][0].id, j,
 distPrimSec, GeoCurvePrimSec.azimuth, altPrimSec,
 distSecTo, GeoCurveSecTo.azimuth, altSecTo,
 distPrimSec + distSecTo));
 }
 }
 }

 // sort secondary airfields by total distance

128

 secondaryAirfields.sort(function (a, b) {
 if (a.totalDist > b.totalDist)
 return 1;
 else
 return -1;
 });

 // add only max number of secondary
 if (secondaryAirfields.length > topNumSecAflds) {
 secondaryAirfields.splice(topNumSecAflds, secondaryAirfields.length - topNumSecAflds);
 }
 selectedAirfields[i][1] = secondaryAirfields;
 }
}

// function that builds routes
function BuildRoutes(selectMDS, fromIdent, toIdent, maxNumStops, planPay, augmented, staging, transload,
 numStopForRoute, numPrimary) {
 var climbAWF = 0;
 var enrouteAWF = 0;
 var enrouteDeltaT = 0;
 var descendAWF = 0;
 var maxPayloadNoTrans = 0;
 var GeoCurveFromTo;
 var distFromTo = 0;

 var sortie1Param, sortie2Param, sortie3Param, sortie4Param, sortie5Param;
 var PCNtakeoffWeight = 0;
 var maxPCNtakeoffWeight;
 var totalSortie1Time, totalSortie2Time, totalSortie3Time, totalSortie4Time, totalSortie5Time;
 var totalSortie1Fuel, totalSortie2Fuel, totalSortie3Fuel, totalSortie4Fuel, totalSortie5Fuel;
 var routeFuelNoTrans, routeFuelTrans, routeFuelTransPlanPay;
 var cargoThruTransSrt1, cargoThruTransSrt2, cargoThruTransSrt3, cargoThruTransSrt4,
 cargoThruTransSrt5;
 var cargoThruTransPlanPaySrt1, cargoThruTransPlanPaySrt2, cargoThruTransPlanPaySrt3,
 cargoThruTransPlanPaySrt4, cargoThruTransPlanPaySrt5;
 var deliveryTime = 0;
 var cycleTime = 0;
 var totalDistance = 0;
 var altLeg1, altLeg2, altLeg3, altLeg4, altLeg5;
 var srt1, srt2, srt3, srt4, srt5;
 var srtArr = new Array();
 var k, m, p, s;
 var maxTransCargoThru, maxTransCargoThruPlanPay;

 k = numPrimary;
 m = numPrimary;
 p = numPrimary;
 s = numPrimary;

 // determine maxPCNweight
 maxPCNtakeoffWeight = 0;
 for (var j = 0; j < airfields[fromIdent].runways.length; j++) {
 PCNtakeoffWeight = PCNtoMaxGrossWeight(selectMDS, airfields[fromIdent].runways[j].pcn);
 if (PCNtakeoffWeight > maxPCNtakeoffWeight)
 maxPCNtakeoffWeight = PCNtakeoffWeight;
 }

 // determine distance origin to destination
 GeoCurveFromTo = VincentyDistance(airfields[fromIdent].wgs_dlat, airfields[fromIdent].wgs_dlong,
 airfields[toIdent].wgs_dlat, airfields[toIdent].wgs_dlong);
 distFromTo = GeoCurveFromTo.distance / 1852.0;

 // determine optimal altitude
 altLeg1 = selectMDS.OptimumAltitudeMaxGW(distFromTo, GeoCurveFromTo.azimuth);

 var maxRange = selectMDS.MaxDistanceForSortie(maxPCNtakeoffWeight, 0, 0, 0, 0, 0, 0, enrouteDeltaT,
 altLeg1);

129

 if (numStopForRoute == 0) {
 // is the sortie possible zero payload
 if (distFromTo <= maxRange) {
 // determine sortie parameters
 sortie1Param = selectMDS.FuelConsumedIterationGrossWeightFixed(maxPCNtakeoffWeight, altLeg1,
 distFromTo, airfields[fromIdent].elev / 1000, airfields[toIdent].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

 // create sortie
 totalSortie1Time = sortie1Param.TotalTime();
 totalSortie1Fuel = sortie1Param.TotalFuel();

 if (transload) {
 cargoThruTransSrt1 = selectMDS.CargoThroughputTransload(totalSortie1Time,
 sortie1Param.payload, augmented, staging);
 if (planPay > sortie1Param.payload)
 cargoThruTransPlanPaySrt1 = cargoThruTransSrt1;
 else
 cargoThruTransPlanPaySrt1 = selectMDS.CargoThroughputTransload(totalSortie1Time,
 planPay, augmented, staging);
 }
 else
 cargoThruTransSrt1 = 0.0;

 srt1 = new sortie(fromIdent, toIdent, distFromTo, cargoThruTransSrt1, totalSortie1Time,
 totalSortie1Fuel, sortie1Param);

 // add sortie to Array
 srtArr = []
 srtArr.push(srt1);

 // create route and add sortie to route
 var rte = new route(srtArr, 0, srt1.distance, 0, 0, sortie1Param.payload, 0, 0, 0, 0);

 // determine delivery and cycle times for the route
 rte.deliveryTime = selectMDS.RouteDeliveryTimeCalculator(srtArr, augmented, transload,
 staging);
 rte.cycleTime = selectMDS.RouteCycleTimeCalculator(srtArr, augmented, transload, staging);

 // determine cargo throughput
 maxTransCargoThru = srt1.cargoThroughput;
 maxTransCargoThruPlanPay = cargoThruTransPlanPaySrt1;
 if (transload) {
 rte.cargoThroughput = srt1.cargoThroughput;
 rte.cargoThruPlanPay = cargoThruTransPlanPaySrt1;
 }
 else {
 rte.cargoThroughput = 24 * rte.maxPayloadNoTrans / rte.cycleTime;
 if (planPay > rte.maxPayloadNoTrans)
 rte.cargoThruPlanPay = rte.cargoThroughput;
 else
 rte.cargoThruPlanPay = 24 * planPay / rte.cycleTime;
 }

 // determine fuel efficiency
 routeFuelTrans = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented, staging,
 maxTransCargoThru);
 routeFuelTransPlanPay = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented, staging,
 maxTransCargoThruPlanPay);
 if (transload) {
 rte.fuelEfficiency = rte.cargoThroughput / routeFuelTrans;
 rte.fuelEffPlanPay = rte.cargoThruPlanPay / routeFuelTransPlanPay;
 }
 else {
 rte.fuelEfficiency = rte.cargoThroughput / (24 * 2 * totalSortie1Fuel / rte.cycleTime);
 rte.fuelEffPlanPay = rte.cargoThruPlanPay / (24 * 2 * totalSortie1Fuel / rte.cycleTime);
 }

 // add route to Array of routes

130

 routes.push(rte);
 }
 }
 else if (numStopForRoute == 1) {
 // is the first sortie possible zero payload
 if (selectedAirfields[k][0].distFromPrim <= maxRange) {
 // is the second sortie possible zero payload
 if (selectedAirfields[k][0].distPrimTo <= maxRange) {
 // determine sortie parameters
 sortie1Param = selectMDS.FuelConsumedIterationGrossWeightFixed(maxPCNtakeoffWeight,
 selectedAirfields[k][0].altFromPrim, selectedAirfields[k][0].distFromPrim,
 airfields[fromIdent].elev / 1000, airfields[selectedAirfields[k][0].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie2Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[k][0].maxPCNgw, selectedAirfields[k][0].altPrimTo,
 selectedAirfields[k][0].distPrimTo,
 airfields[selectedAirfields[k][0].id].elev / 1000,
 airfields[toIdent].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

 // create sortie
 totalSortie1Time = sortie1Param.TotalTime();
 totalSortie1Fuel = sortie1Param.TotalFuel();
 totalSortie2Time = sortie2Param.TotalTime();
 totalSortie2Fuel = sortie2Param.TotalFuel();

 if (transload) {
 cargoThruTransSrt1 = selectMDS.CargoThroughputTransload(totalSortie1Time,
 sortie1Param.payload, augmented, staging);
 cargoThruTransSrt2 = selectMDS.CargoThroughputTransload(totalSortie2Time,
 sortie2Param.payload, augmented, staging);
 if (planPay > sortie1Param.payload)
 cargoThruTransPlanPaySrt1 = cargoThruTransSrt1;
 else
 cargoThruTransPlanPaySrt1 = selectMDS.CargoThroughputTransload(totalSortie1Time,
 planPay, augmented, staging);
 if (planPay > sortie2Param.payload)
 cargoThruTransPlanPaySrt2 = cargoThruTransSrt2;
 else
 cargoThruTransPlanPaySrt2 = selectMDS.CargoThroughputTransload(totalSortie2Time,
 planPay, augmented, staging);
 }
 else {
 cargoThruTransSrt1 = 0.0;
 cargoThruTransSrt2 = 0.0;
 }

 srt1 = new sortie(fromIdent, selectedAirfields[k][0].id,
 selectedAirfields[k][0].distFromPrim, cargoThruTransSrt1,
 totalSortie1Time, totalSortie1Fuel, sortie1Param);
 srt2 = new sortie(selectedAirfields[k][0].id, toIdent, selectedAirfields[k][0].distPrimTo,
 cargoThruTransSrt2, totalSortie2Time, totalSortie2Fuel, sortie2Param);

 // add sortie to Array
 srtArr = [];
 srtArr.push(srt1);
 srtArr.push(srt2);

 // create route and add sortie to route
 totalDistance = srt1.distance + srt2.distance;
 maxPayloadNoTrans = Math.min(sortie1Param.payload, sortie2Param.payload);
 routeFuelNoTrans = srt1.enrouteFuel + srt2.enrouteFuel;
 var rte = new route(srtArr, 1, totalDistance, 0, 0, maxPayloadNoTrans, 0, 0, 0, 0);

 // determine delivery and cycle times for the route
 rte.deliveryTime = selectMDS.RouteDeliveryTimeCalculator(srtArr, augmented, transload,
 staging);
 rte.cycleTime = selectMDS.RouteCycleTimeCalculator(srtArr, augmented, transload, staging);

131

 // determine cargo throughput
 maxTransCargoThru = Math.max(srt1.cargoThroughput, srt2.cargoThroughput);
 maxTransCargoThruPlanPay = Math.max(cargoThruTransPlanPaySrt1, cargoThruTransPlanPaySrt2);
 if (transload) {
 rte.cargoThroughput = maxTransCargoThru /
 ((maxTransCargoThru / srt1.cargoThroughput) +
 (maxTransCargoThru / srt2.cargoThroughput));
 rte.cargoThruPlanPay = maxTransCargoThruPlanPay /
 ((maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt1) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt2));
 }
 else {
 rte.cargoThroughput = 24 * rte.maxPayloadNoTrans / rte.cycleTime;
 if (planPay > rte.maxPayloadNoTrans)
 rte.cargoThruPlanPay = rte.cargoThroughput;
 else
 rte.cargoThruPlanPay = 24 * planPay / rte.cycleTime;
 }

 // determine fuel efficiency
 routeFuelTrans = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented, staging,
 maxTransCargoThru);
 routeFuelTransPlanPay = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented, staging,
 maxTransCargoThruPlanPay);
 if (transload) {
 rte.fuelEfficiency = rte.cargoThroughput / routeFuelTrans;
 rte.fuelEffPlanPay = rte.cargoThruPlanPay / routeFuelTransPlanPay;
 }
 else {
 rte.fuelEfficiency = rte.cargoThroughput /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 rte.fuelEffPlanPay = rte.cargoThruPlanPay /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 }

 // add route to Array of routes
 routes.push(rte);
 }
 }
 }
 else if (numStopForRoute == 2) {
 // determine if a secondary airfield exists and the first sortie is possible zero payload
 if (selectedAirfields[m][1].length != 0 && (selectedAirfields[m][0].distFromPrim < maxRange)) {
 // loop through the secondary airfields
 for (var n = 0; n < selectedAirfields[m][1].length; n++) {
 // is the second sortie possible zero payload
 if (selectedAirfields[m][1][n].distPrimSec <= maxRange) {
 // is the third sortie possible zero payload
 if (selectedAirfields[m][1][n].distSecTo <= maxRange) {
 // determine sortie parameters
 sortie1Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 maxPCNtakeoffWeight,
 selectedAirfields[m][0].altFromPrim,
 selectedAirfields[m][0].distFromPrim,
 airfields[fromIdent].elev / 1000,
 airfields[selectedAirfields[m][0].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie2Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[m][0].maxPCNgw,
 selectedAirfields[m][1][n].altPrimSec,
 selectedAirfields[m][1][n].distPrimSec,
 airfields[selectedAirfields[m][0].id].elev / 1000,
 airfields[selectedAirfields[m][1][n].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie3Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[selectedAirfields[m][1][n].selAfldsPos][0].maxPCNgw,
 selectedAirfields[m][1][n].altSecTo,
 selectedAirfields[m][1][n].distSecTo,

132

 airfields[selectedAirfields[m][1][n].id].elev / 1000,
 airfields[toIdent].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

 // create sortie
 totalSortie1Time = sortie1Param.TotalTime();
 totalSortie1Fuel = sortie1Param.TotalFuel();
 totalSortie2Time = sortie2Param.TotalTime();
 totalSortie2Fuel = sortie2Param.TotalFuel();
 totalSortie3Time = sortie3Param.TotalTime();
 totalSortie3Fuel = sortie3Param.TotalFuel();

 if (transload) {
 cargoThruTransSrt1 = selectMDS.CargoThroughputTransload(totalSortie1Time,
 sortie1Param.payload, augmented, staging);
 cargoThruTransSrt2 = selectMDS.CargoThroughputTransload(totalSortie2Time,
 sortie2Param.payload, augmented, staging);
 cargoThruTransSrt3 = selectMDS.CargoThroughputTransload(totalSortie3Time,
 sortie3Param.payload, augmented, staging);
 if (planPay > sortie1Param.payload)
 cargoThruTransPlanPaySrt1 = cargoThruTransSrt1;
 else
 cargoThruTransPlanPaySrt1 = selectMDS.CargoThroughputTransload(
 totalSortie1Time, planPay, augmented, staging);
 if (planPay > sortie2Param.payload)
 cargoThruTransPlanPaySrt2 = cargoThruTransSrt2;
 else
 cargoThruTransPlanPaySrt2 = selectMDS.CargoThroughputTransload(
 totalSortie2Time, planPay, augmented, staging);
 if (planPay > sortie3Param.payload)
 cargoThruTransPlanPaySrt3 = cargoThruTransSrt3;
 else
 cargoThruTransPlanPaySrt3 = selectMDS.CargoThroughputTransload(
 totalSortie3Time, planPay, augmented, staging);
 }
 else {
 cargoThruTransSrt1 = 0.0;
 cargoThruTransSrt2 = 0.0;
 cargoThruTransSrt3 = 0.0;
 }
 srt1 = new sortie(fromIdent, selectedAirfields[m][0].id,
 selectedAirfields[m][0].distFromPrim, cargoThruTransSrt1,
 totalSortie1Time, totalSortie1Fuel, sortie1Param);
 srt2 = new sortie(selectedAirfields[m][0].id, selectedAirfields[m][1][n].id,
 selectedAirfields[m][1][n].distPrimSec, cargoThruTransSrt2,
 totalSortie2Time, totalSortie2Fuel, sortie2Param);
 srt3 = new sortie(selectedAirfields[m][1][n].id, toIdent,
 selectedAirfields[m][1][n].distSecTo, cargoThruTransSrt3,
 totalSortie3Time, totalSortie3Fuel, sortie3Param);

 // add sortie to Array
 srtArr = [];
 srtArr.push(srt1);
 srtArr.push(srt2);
 srtArr.push(srt3);

 // create route and add sortie to route
 totalDistance = srt1.distance + srt2.distance + srt3.distance;
 maxPayloadNoTrans = Math.min(sortie1Param.payload, sortie2Param.payload,
 sortie3Param.payload);
 routeFuelNoTrans = srt1.enrouteFuel + srt2.enrouteFuel + srt3.enrouteFuel;
 var rte = new route(srtArr, 2, totalDistance, 0, 0, maxPayloadNoTrans, 0, 0, 0,
 0);

 // determine delivery and cycle times for the route
 rte.deliveryTime = selectMDS.RouteDeliveryTimeCalculator(srtArr, augmented,
 transload, staging);
 rte.cycleTime = selectMDS.RouteCycleTimeCalculator(srtArr, augmented, transload,
 staging);

133

 // determine cargo throughput
 maxTransCargoThru = Math.max(srt1.cargoThroughput, srt2.cargoThroughput,
 srt3.cargoThroughput);
 maxTransCargoThruPlanPay = Math.max(cargoThruTransPlanPaySrt1,
 cargoThruTransPlanPaySrt2, cargoThruTransPlanPaySrt3);
 if (transload) {
 rte.cargoThroughput = maxTransCargoThru /
 ((maxTransCargoThru / srt1.cargoThroughput) +
 (maxTransCargoThru / srt2.cargoThroughput) +
 (maxTransCargoThru / srt3.cargoThroughput));
 rte.cargoThruPlanPay = maxTransCargoThruPlanPay /
 ((maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt1) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt2) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt3));
 }
 else {
 rte.cargoThroughput = 24 * rte.maxPayloadNoTrans / rte.cycleTime;
 if (planPay > rte.maxPayloadNoTrans)
 rte.cargoThruPlanPay = rte.cargoThroughput;
 else
 rte.cargoThruPlanPay = 24 * planPay / rte.cycleTime;
 }

 // determine fuel efficiency
 routeFuelTrans = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented, staging,
 maxTransCargoThru);
 routeFuelTransPlanPay = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented,
 staging, maxTransCargoThruPlanPay);
 if (transload) {
 rte.fuelEfficiency = rte.cargoThroughput / routeFuelTrans;
 rte.fuelEffPlanPay = rte.cargoThruPlanPay / routeFuelTransPlanPay;
 }
 else {
 rte.fuelEfficiency = rte.cargoThroughput /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 rte.fuelEffPlanPay = rte.cargoThruPlanPay /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 }

 // add route to Array of routes
 routes.push(rte);
 }
 }
 }
 }
 }
 else if (numStopForRoute == 3) {
 // determine if a secondary airfield exists and the first sortie is possible zero payload
 if (selectedAirfields[p][1].length != 0 && (selectedAirfields[p][0].distFromPrim <= maxRange)) {
 // loop through the secondary airfields
 for (var q = 0; q < selectedAirfields[p][1].length; q++) {
 // determine if a tertiary airfield exists and the second sortie is possible zero payload
 if (selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1].length != 0 &&
 (selectedAirfields[p][1][q].distPrimSec <= maxRange)) {
 // loop through the tertiary airfields
 for (var r = 0; r < selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1].length;
 r++) {
 // is the third sortie possible zero payload
 if (selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1][r].distPrimSec <=
 maxRange) {
 // is the fourth sortie possible zero payload
 if (selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1][r].distSecTo
 <= maxRange) {
 // determine sortie parameters
 sortie1Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 maxPCNtakeoffWeight,
 selectedAirfields[p][0].altFromPrim,
 selectedAirfields[p][0].distFromPrim,

134

 airfields[fromIdent].elev / 1000,
 airfields[selectedAirfields[p][0].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie2Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[p][0].maxPCNgw,
 selectedAirfields[p][1][q].altPrimSec,
 selectedAirfields[p][1][q].distPrimSec,
 airfields[selectedAirfields[p][0].id].elev / 1000,
 airfields[selectedAirfields[p][1][q].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie3Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][0].
 maxPCNgw
 selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1][r].
 altPrimSec,
 selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1][r].
 distPrimSec,
 airfields[selectedAirfields[p][1][q].id].elev / 1000,
 airfields[selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

 sortie4Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].selAfldsPos][0].maxPCNgw,
 selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1][r].
 altSecTo,
 selectedAirfields[selectedAirfields[p][1][q].selAfldsPos][1][r].
 distSecTo,
 airfields[selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].id].elev / 1000,
 airfields[toIdent].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

 // create sortie
 totalSortie1Time = sortie1Param.TotalTime();
 totalSortie1Fuel = sortie1Param.TotalFuel();
 totalSortie2Time = sortie2Param.TotalTime();
 totalSortie2Fuel = sortie2Param.TotalFuel();
 totalSortie3Time = sortie3Param.TotalTime();
 totalSortie3Fuel = sortie3Param.TotalFuel();
 totalSortie4Time = sortie4Param.TotalTime();
 totalSortie4Fuel = sortie4Param.TotalFuel();

 if (transload) {
 cargoThruTransSrt1 = selectMDS.CargoThroughputTransload(
 totalSortie1Time, sortie1Param.payload, augmented, staging);
 cargoThruTransSrt2 = selectMDS.CargoThroughputTransload(
 totalSortie2Time, sortie2Param.payload, augmented, staging);
 cargoThruTransSrt3 = selectMDS.CargoThroughputTransload(
 totalSortie3Time, sortie3Param.payload, augmented, staging);
 cargoThruTransSrt4 = selectMDS.CargoThroughputTransload(
 totalSortie4Time, sortie4Param.payload, augmented, staging);
 if (planPay > sortie1Param.payload)
 cargoThruTransPlanPaySrt1 = cargoThruTransSrt1;
 else
 cargoThruTransPlanPaySrt1 = selectMDS.CargoThroughputTransload(
 totalSortie1Time, planPay, augmented, staging);
 if (planPay > sortie2Param.payload)
 cargoThruTransPlanPaySrt2 = cargoThruTransSrt2;
 else
 cargoThruTransPlanPaySrt2 = selectMDS.CargoThroughputTransload(
 totalSortie2Time, planPay, augmented, staging);
 if (planPay > sortie3Param.payload)
 cargoThruTransPlanPaySrt3 = cargoThruTransSrt3;
 else
 cargoThruTransPlanPaySrt3 = selectMDS.CargoThroughputTransload(
 totalSortie3Time, planPay, augmented, staging);
 if (planPay > sortie4Param.payload)

135

 cargoThruTransPlanPaySrt4 = cargoThruTransSrt4;
 else
 cargoThruTransPlanPaySrt4 = selectMDS.CargoThroughputTransload(
 totalSortie4Time, planPay, augmented, staging);
 }
 else {
 cargoThruTransSrt1 = 0.0;
 cargoThruTransSrt2 = 0.0;
 cargoThruTransSrt3 = 0.0;
 cargoThruTransSrt4 = 0.0;
 }
 srt1 = new sortie(fromIdent, selectedAirfields[p][0].id,
 selectedAirfields[p][0].distFromPrim, cargoThruTransSrt1,
 totalSortie1Time, totalSortie1Fuel, sortie1Param);
 srt2 = new sortie(selectedAirfields[p][0].id,
 selectedAirfields[p][1][q].id,
 selectedAirfields[p][1][q].distPrimSec, cargoThruTransSrt2,
 totalSortie2Time, totalSortie2Fuel, sortie2Param);
 srt3 = new sortie(selectedAirfields[p][1][q].id,
 selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].id,
 selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].distPrimSec,
 cargoThruTransSrt3, totalSortie3Time,
 totalSortie3Fuel, sortie3Param);
 srt4 = new sortie(selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].id,
 toIdent,
 selectedAirfields[selectedAirfields[p][1][q].
 selAfldsPos][1][r].distSecTo,
 cargoThruTransSrt4, totalSortie4Time,
 totalSortie4Fuel, sortie4Param);

 // add sortie to Array
 srtArr = [];
 srtArr.push(srt1);
 srtArr.push(srt2);
 srtArr.push(srt3);
 srtArr.push(srt4);

 // create route and add sortie to route
 totalDistance = srt1.distance + srt2.distance + srt3.distance +
 srt4.distance;

 maxPayloadNoTrans = Math.min(sortie1Param.payload, sortie2Param.payload,
 sortie3Param.payload, sortie4Param.payload);
 routeFuelNoTrans = srt1.enrouteFuel + srt2.enrouteFuel +
 srt3.enrouteFuel + srt4.enrouteFuel;
 var rte = new route(srtArr, 3, totalDistance, 0, 0, maxPayloadNoTrans, 0,
 0, 0, 0);
 // determine delivery and cycle times for the route
 rte.deliveryTime = selectMDS.RouteDeliveryTimeCalculator(srtArr,
 augmented, transload, staging);
 rte.cycleTime = selectMDS.RouteCycleTimeCalculator(srtArr, augmented,
 transload, staging);
 // determine cargo throughput
 maxTransCargoThru = Math.max(srt1.cargoThroughput, srt2.cargoThroughput,
 srt3.cargoThroughput, srt4.cargoThroughput);
 maxTransCargoThruPlanPay = Math.max(cargoThruTransPlanPaySrt1,
 cargoThruTransPlanPaySrt2,
 cargoThruTransPlanPaySrt3,
 cargoThruTransPlanPaySrt4);
 if (transload) {
 rte.cargoThroughput = maxTransCargoThru /
 ((maxTransCargoThru / srt1.cargoThroughput) +
 (maxTransCargoThru / srt2.cargoThroughput) +
 (maxTransCargoThru / srt3.cargoThroughput) +
 (maxTransCargoThru / srt4.cargoThroughput));
 rte.cargoThruPlanPay = maxTransCargoThruPlanPay /

136

 ((maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt1) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt2) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt3) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt4));
 }
 else {
 rte.cargoThroughput = 24 * rte.maxPayloadNoTrans / rte.cycleTime;
 if (planPay > rte.maxPayloadNoTrans)
 rte.cargoThruPlanPay = rte.cargoThroughput;
 else
 rte.cargoThruPlanPay = 24 * planPay / rte.cycleTime;
 }
 // determine fuel efficiency
 routeFuelTrans = selectMDS.DailyFuelConsumptionTrans(srtArr, augmented,
 staging, maxTransCargoThru);
 routeFuelTransPlanPay = selectMDS.DailyFuelConsumptionTrans(srtArr,
 augmented, staging, maxTransCargoThruPlanPay);
 if (transload) {
 rte.fuelEfficiency = rte.cargoThroughput / routeFuelTrans;
 rte.fuelEffPlanPay = rte.cargoThruPlanPay / routeFuelTransPlanPay;
 }
 else {
 rte.fuelEfficiency = rte.cargoThroughput /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 rte.fuelEffPlanPay = rte.cargoThruPlanPay /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 }
 // add route to Array of routes
 routes.push(rte);
 }
 }
 }
 }
 }
 }
 }
 else if (numStopForRoute == 4) {
 // determine if a secondary airfield exists and the first sortie is possible zero payload
 if (selectedAirfields[s][1].length != 0 && (selectedAirfields[s][0].distFromPrim <= maxRange)) {
 // loop through the secondary airfields
 for (var t = 0; t < selectedAirfields[s][1].length; t++) {
 // determine if a tertiary airfield exists and the second sortie is possible zero payload
 if (selectedAirfields[selectedAirfields[s][1][t].selAfldsPos][1].length != 0 &&
 (selectedAirfields[s][1][t].distPrimSec <= maxRange)) {
 // loop through the tertiary airfields
 for (var u = 0; u < selectedAirfields[selectedAirfields[s][1][t].selAfldsPos][1].
 length; u++) {
 // determine if quaternary airfield exists & third sortie is possible zero payload
 if (selectedAirfields[selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].selAfldsPos][1].length != 0 &&
 (selectedAirfields[selectedAirfields[s][1][t].selAfldsPos][1][u].distPrimSec
 <= maxRange)) {
 // loop through the quaternary airfields
 for (var v = 0; v < selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].selAfldsPos][1][u].selAfldsPos][1].length; v++) {
 // is the fourth sortie possible zero payload
 if (selectedAirfields[selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].selAfldsPos][1][v].distPrimSec <= maxRange) {
 // is the fifth sortie possible zero payload
 if (selectedAirfields[selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].selAfldsPos][1][v].distSecTo <= maxRange) {
 // determine sortie parameters
 sortie1Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 maxPCNtakeoffWeight,
 selectedAirfields[s][0].altFromPrim,
 selectedAirfields[s][0].distFromPrim,
 airfields[fromIdent].elev / 1000,
 airfields[selectedAirfields[s][0].id].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

137

 sortie2Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[s][0].maxPCNgw,
 selectedAirfields[s][1][t].altPrimSec,
 selectedAirfields[s][1][t].distPrimSec,
 airfields[selectedAirfields[s][0].id].elev / 1000,
 airfields[selectedAirfields[s][1][t].id].elev/1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie3Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][0].maxPCNgw,
 selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].altPrimSec,
 selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].distPrimSec,
 airfields[selectedAirfields[s][1][t].id].elev/1000,
 airfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].id].elev/1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie4Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][0].maxPCNgw,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].altPrimSec,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].distPrimSec,
 airfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].id].elev/1000,
 airfields[selectedAirfields[
 selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].id].elev/1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);
 sortie5Param = selectMDS.FuelConsumedIterationGrossWeightFixed(
 selectedAirfields[selectedAirfields[
 selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].selAfldsPos][1][v].
 selAfldsPos][0].maxPCNgw,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].altSecTo,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].distSecTo,
 airfields[selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].id].elev / 1000,
 airfields[toIdent].elev / 1000,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT);

 // create sortie
 totalSortie1Time = sortie1Param.TotalTime();
 totalSortie1Fuel = sortie1Param.TotalFuel();
 totalSortie2Time = sortie2Param.TotalTime();
 totalSortie2Fuel = sortie2Param.TotalFuel();
 totalSortie3Time = sortie3Param.TotalTime();
 totalSortie3Fuel = sortie3Param.TotalFuel();
 totalSortie4Time = sortie4Param.TotalTime();

138

 totalSortie4Fuel = sortie4Param.TotalFuel();
 totalSortie5Time = sortie5Param.TotalTime();
 totalSortie5Fuel = sortie5Param.TotalFuel();

 if (transload) {
 cargoThruTransSrt1 = selectMDS.CargoThroughputTransload(
 totalSortie1Time, sortie1Param.payload, augmented, staging);
 cargoThruTransSrt2 = selectMDS.CargoThroughputTransload(
 totalSortie2Time, sortie2Param.payload, augmented, staging);
 cargoThruTransSrt3 = selectMDS.CargoThroughputTransload(
 totalSortie3Time, sortie3Param.payload, augmented, staging);
 cargoThruTransSrt4 = selectMDS.CargoThroughputTransload(
 totalSortie4Time, sortie4Param.payload, augmented, staging);
 cargoThruTransSrt5 = selectMDS.CargoThroughputTransload(
 totalSortie5Time, sortie5Param.payload, augmented, staging);
 if (planPay > sortie1Param.payload)
 cargoThruTransPlanPaySrt1 = cargoThruTransSrt1;
 else
 cargoThruTransPlanPaySrt1 = selectMDS.
 CargoThroughputTransload(totalSortie1Time, planPay,
 augmented, staging);
 if (planPay > sortie2Param.payload)
 cargoThruTransPlanPaySrt2 = cargoThruTransSrt2;
 else
 cargoThruTransPlanPaySrt2 = selectMDS.
 CargoThroughputTransload(totalSortie2Time, planPay,
 augmented, staging);
 if (planPay > sortie3Param.payload)
 cargoThruTransPlanPaySrt3 = cargoThruTransSrt3;
 else
 cargoThruTransPlanPaySrt3 = selectMDS.
 CargoThroughputTransload(totalSortie3Time, planPay,
 augmented, staging);
 if (planPay > sortie4Param.payload)
 cargoThruTransPlanPaySrt4 = cargoThruTransSrt4;
 else
 cargoThruTransPlanPaySrt4 = selectMDS.
 CargoThroughputTransload(totalSortie4Time, planPay,
 augmented, staging);
 if (planPay > sortie5Param.payload)
 cargoThruTransPlanPaySrt5 = cargoThruTransSrt5;
 else
 cargoThruTransPlanPaySrt5 = selectMDS.
 CargoThroughputTransload(totalSortie5Time, planPay,
 augmented, staging);
 }
 else {
 cargoThruTransSrt1 = 0.0;
 cargoThruTransSrt2 = 0.0;
 cargoThruTransSrt3 = 0.0;
 cargoThruTransSrt4 = 0.0;
 cargoThruTransSrt5 = 0.0;
 }
 srt1 = new sortie(fromIdent, selectedAirfields[s][0].id,
 selectedAirfields[s][0].distFromPrim,
 cargoThruTransSrt1,
 totalSortie1Time, totalSortie1Fuel,
 sortie1Param);
 srt2 = new sortie(selectedAirfields[s][0].id,
 selectedAirfields[s][1][t].id,
 selectedAirfields[s][1][t].distPrimSec,
 cargoThruTransSrt2,
 totalSortie2Time, totalSortie2Fuel,
 sortie2Param);
 srt3 = new sortie(selectedAirfields[s][1][t].id,
 selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].id,
 selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].distPrimSec,

139

 cargoThruTransSrt3,
 totalSortie3Time, totalSortie3Fuel,
 sortie3Param);
 srt4 = new sortie(selectedAirfields[selectedAirfields[s][1][t].
 selAfldsPos][1][u].id,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].id,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].distSecTo,
 cargoThruTransSrt4,
 totalSortie4Time, totalSortie4Fuel,
 sortie4Param);
 srt5 = new sortie(selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].id,
 toIdent,
 selectedAirfields[selectedAirfields[
 selectedAirfields[s][1][t].
 selAfldsPos][1][u].
 selAfldsPos][1][v].distSecTo,
 cargoThruTransSrt5,
 totalSortie5Time, totalSortie5Fuel,
 sortie5Param);

 // add sortie to Array
 srtArr = [];
 srtArr.push(srt1);
 srtArr.push(srt2);
 srtArr.push(srt3);
 srtArr.push(srt4);
 srtArr.push(srt5);

 // create route and add sortie to route
 totalDistance = srt1.distance + srt2.distance + srt3.distance +
 srt4.distance + srt5.distance;
 maxPayloadNoTrans = Math.min(sortie1Param.payload,
 sortie2Param.payload, sortie3Param.payload,
 sortie4Param.payload, sortie5Param.payload);
 routeFuelNoTrans = srt1.enrouteFuel + srt2.enrouteFuel +
 srt3.enrouteFuel + srt4.enrouteFuel +
 srt5.enrouteFuel;
 var rte = new route(srtArr, 4, totalDistance, 0, 0,
 maxPayloadNoTrans, 0, 0, 0, 0);

 // determine delivery and cycle times for the route
 rte.deliveryTime = selectMDS.RouteDeliveryTimeCalculator(srtArr,
 augmented, transload, staging);
 rte.cycleTime = selectMDS.RouteCycleTimeCalculator(srtArr,
 augmented, transload, staging);

 // determine cargo throughput
 maxTransCargoThru = Math.max(srt1.cargoThroughput,
 srt2.cargoThroughput, srt3.cargoThroughput,
 srt4.cargoThroughput, srt5.cargoThroughput);
 maxTransCargoThruPlanPay = Math.max(cargoThruTransPlanPaySrt1,
 cargoThruTransPlanPaySrt2, cargoThruTransPlanPaySrt3,
 cargoThruTransPlanPaySrt4, cargoThruTransPlanPaySrt5);
 if (transload) {
 rte.cargoThroughput = maxTransCargoThru /
 ((maxTransCargoThru / srt1.cargoThroughput) +
 (maxTransCargoThru / srt2.cargoThroughput) +
 (maxTransCargoThru / srt3.cargoThroughput) +
 (maxTransCargoThru / srt4.cargoThroughput) +
 (maxTransCargoThru / srt5.cargoThroughput));

140

 rte.cargoThruPlanPay = maxTransCargoThruPlanPay /
 ((maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt1) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt2) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt3) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt4) +
 (maxTransCargoThruPlanPay / cargoThruTransPlanPaySrt5));
 }
 else {
 rte.cargoThroughput = 24*rte.maxPayloadNoTrans/rte.cycleTime;
 if (planPay > rte.maxPayloadNoTrans)
 rte.cargoThruPlanPay = rte.cargoThroughput;
 else
 rte.cargoThruPlanPay = 24 * planPay / rte.cycleTime;
 }

 // determine fuel efficiency
 routeFuelTrans = selectMDS.DailyFuelConsumptionTrans(srtArr,
 augmented, staging, maxTransCargoThru);
 routeFuelTransPlanPay = selectMDS.DailyFuelConsumptionTrans(
 srtArr, augmented, staging, maxTransCargoThruPlanPay);
 if (transload) {
 rte.fuelEfficiency = rte.cargoThroughput / routeFuelTrans;
 rte.fuelEffPlanPay = rte.cargoThruPlanPay /
 routeFuelTransPlanPay;
 }
 else {
 rte.fuelEfficiency = rte.cargoThroughput /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 rte.fuelEffPlanPay = rte.cargoThruPlanPay /
 (24 * 2 * routeFuelNoTrans / rte.cycleTime);
 }

 // add route to Array of routes
 routes.push(rte);
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

141

Appendix B: Aircraft Performance Algorithms

AircraftMDS Object
Property Description

operatingWeight The empty weight of the aircraft withouth cargo or fuel.
maxFuelLoad The maximum fuel load that an aircraft can carry.

acftMaxPayload The maximum payload that an aircraft can carry.
maxGrossTakeoffWeight The maximum gross weight that an aircraft can have at takeoff.

fuelSTTO Fuel for start, taxi and takeoff.
fuelRAH Fuel for reserve, alternate and holding.

rangeBeta0 - 5 Specific range regression Betas.
rangeWindAdjustBeta0 and 1 Specific range wind adjustment regression Betas.
rangeTempAdjustBeta0 and 1 Specific range temperature adjustment regression Betas.

machBeta0 - 2 Mach airspeed regression Betas to achieve specific range.
trueAirspeedBeta0 - 3 True airspeed regression Betas for given mach.
timeToClimbBeta0 - 3 Time to climb to cruise altitude regression Betas.
distToClimbBeta0 - 3 Distance to climb to cruise altitude regression Betas.
fuelToClimbBeta0 - 3 Fuel to climb to cruise altitude regression Betas.

timeToDescendBeta0 - 4 Time to descend from cruise altitude regression Betas.
distToDescendBeta0 - 4 Distance to climb to cruise altitude regression Betas.
fuelToDescendBeta0 - 4 Fuel to climb to cruise altitude regression Betas.

timeApproach Time for an approach to a landing.
fuelApproach Fuel for an approach to a landing.

optimumAltitudeBeta0 and 1 Optimum altitude regression Betas given gross takeoff weight.
CFLBeta0 - 9 Critical field length regression Betas.

landDistBeta0 - 5 Landing distance regression Betas
minRwyLength Minimum runway length for takeoff and landing.
minRwyWidth Minimum runway width for takeoff and landing.
gndTimeRefuel Ground time for fueling service only.

gndTimeTransload Ground time for fueling and cargo loading/unloading.
normFDP Normal crew flight duty period.
augFDP Augmented crew flight duty period.

showToTakeoffTime Time from aircrew show at the airfield to takeoff.
crewRestToTakeoffTime Time from aircrew entering crew rest to subsequent takeoff.

// Creates an aircraftMDS() object with the properties described
function aircraftMDS(operatingWeight, maxFuelLoad, acftMaxPayload, maxGrossTakeoffWeight,fuelSTTO,fuelRAH,
 rangeBeta0, rangeBeta1, rangeBeta2, rangeBeta3, rangeBeta4, rangeBeta5,
 rangeWindAdjustBeta0, rangeWindAdjustBeta1, rangeTempAdjustBeta0, rangeTempAdjustBeta1,
 machBeta0, machBeta1, machBeta2,
 trueAirspeedBeta0, trueAirspeedBeta1, trueAirspeedBeta2, trueAirspeedBeta3,
 timeToClimbBeta0, timeToClimbBeta1, timeToClimbBeta2, timeToClimbBeta3,
 distToClimbBeta0, distToClimbBeta1, distToClimbBeta2, distToClimbBeta3,
 fuelToClimbBeta0, fuelToClimbBeta1, fuelToClimbBeta2, fuelToClimbBeta3,
 timeToDescendBeta0, timeToDescendBeta1, timeToDescendBeta2, timeToDescendBeta3, timeToDescendBeta4,
 distToDescendBeta0, distToDescendBeta1, distToDescendBeta2, distToDescendBeta3, distToDescendBeta4,

142

 fuelToDescendBeta0, fuelToDescendBeta1, fuelToDescendBeta2, fuelToDescendBeta3, fuelToDescendBeta4,
 timeApproach, fuelApproach, optimumAltitudeBeta0, optimumAltitudeBeta1,
 CFLBeta0, CFLBeta1, CFLBeta2, CFLBeta3, CFLBeta4, CFLBeta5, CFLBeta6, CFLBeta7, CFLBeta8, CFLBeta9,
 landDistBeta0, landDistBeta1, landDistBeta2, landDistBeta3, landDistBeta4, landDistBeta5,
 minRwyLength, minRwyWidth, gndTimeRefuel, gndTimeTransload, normFDP, augFDP, showToTakeOffTime,
 crewRestToTakeoffTime) {
 this.operatingWeight = operatingWeight;
 this.maxFuelLoad = maxFuelLoad;
 this.acftMaxPayload = acftMaxPayload;
 this.maxGrossTakeoffWeight = maxGrossTakeoffWeight;
 this.fuelSTTO = fuelSTTO;
 this.fuelRAH = fuelRAH;
 this.rangeBeta0 = rangeBeta0; this.rangeBeta1 = rangeBeta1; this.rangeBeta2 = rangeBeta2;
 this.rangeBeta3 = rangeBeta3; this.rangeBeta4 = rangeBeta4;
 this.rangeBeta5 = rangeBeta5;
 this.rangeWindAdjustBeta0 = rangeWindAdjustBeta0; this.rangeWindAdjustBeta1 = rangeWindAdjustBeta1;
 this.rangeTempAdjustBeta0 = rangeTempAdjustBeta0; this.rangeTempAdjustBeta1 = rangeTempAdjustBeta1;
 this.machBeta0 = machBeta0; this.machBeta1 = machBeta1; this.machBeta2 = machBeta2;
 this.trueAirspeedBeta0 = trueAirspeedBeta0; this.trueAirspeedBeta1 = trueAirspeedBeta1;
 this.trueAirspeedBeta2 = trueAirspeedBeta2;
 this.trueAirspeedBeta3 = trueAirspeedBeta3;
 this.timeToClimbBeta0 = timeToClimbBeta0; this.timeToClimbBeta1 = timeToClimbBeta1;
 this.timeToClimbBeta2 = timeToClimbBeta2;
 this.timeToClimbBeta3 = timeToClimbBeta3;
 this.distToClimbBeta0 = distToClimbBeta0; this.distToClimbBeta1 = distToClimbBeta1;
 this.distToClimbBeta2 = distToClimbBeta2;
 this.distToClimbBeta3 = distToClimbBeta3;
 this.fuelToClimbBeta0 = fuelToClimbBeta0; this.fuelToClimbBeta1 = fuelToClimbBeta1;
 this.fuelToClimbBeta2 = fuelToClimbBeta2;
 this.fuelToClimbBeta3 = fuelToClimbBeta3;
 this.timeToDescendBeta0 = timeToDescendBeta0; this.timeToDescendBeta1 = timeToDescendBeta1;
 this.timeToDescendBeta2 = timeToDescendBeta2;
 this.timeToDescendBeta3 = timeToDescendBeta3; this.timeToDescendBeta4 = timeToDescendBeta4;
 this.distToDescendBeta0 = distToDescendBeta0; this.distToDescendBeta1 = distToDescendBeta1;
 this.distToDescendBeta2 = distToDescendBeta2;
 this.distToDescendBeta3 = distToDescendBeta3; this.distToDescendBeta4 = distToDescendBeta4;
 this.fuelToDescendBeta0 = fuelToDescendBeta0; this.fuelToDescendBeta1 = fuelToDescendBeta1;
 this.fuelToDescendBeta2 = fuelToDescendBeta2;
 this.fuelToDescendBeta3 = fuelToDescendBeta3; this.fuelToDescendBeta4 = fuelToDescendBeta4;
 this.timeApproach = timeApproach;
 this.fuelApproach = fuelApproach;
 this.optimumAltitudeBeta0 = optimumAltitudeBeta0; this.optimumAltitudeBeta1 = optimumAltitudeBeta1;
 this.CFLBeta0 = CFLBeta0; this.CFLBeta1 = CFLBeta1; this.CFLBeta2 = CFLBeta2;
 this.CFLBeta3 = CFLBeta3; this.CFLBeta4 = CFLBeta4;
 this.CFLBeta5 = CFLBeta5; this.CFLBeta6 = CFLBeta6; this.CFLBeta7 = CFLBeta7;
 this.CFLBeta8 = CFLBeta8; this.CFLBeta9 = CFLBeta9;
 this.landDistBeta0 = landDistBeta0; this.landDistBeta1 = landDistBeta1;
 this.landDistBeta2 = landDistBeta2; this.landDistBeta3 = landDistBeta3;
 this.landDistBeta4 = landDistBeta4; this.landDistBeta5 = landDistBeta5;
 this.minRwyLength = minRwyLength;
 this.minRwyWidth = minRwyWidth;
 this.gndTimeRefuel = gndTimeRefuel;
 this.gndTimeTransload = gndTimeTransload;
 this.normFDP = normFDP;
 this.augFDP = augFDP;
 this.showToTakeoffTime = showToTakeOffTime;
 this.crewRestToTakeoffTime = crewRestToTakeoffTime;
}

143

AircraftMDS Instances

/*Creates a C-5 object*/
var C5 = new aircraftMDS(380.0, 347.0, 270.0, 769.0, 3.0, 64.49,
 24.537604095439, 0.551086914994, 0.000196228333, -0.031831015851, 0.000019136753, -0.000490331600,
 1.0, 0.002286, 1.0, 0.0,
 0.168379101527, 0.010106030835, 0.000400547000,
 0.739962476547, -0.130206378986851, 661.129455909944, -2.28799249530959,
 1.252387836193, 0.181229214659, 0.000040478237, 0.000001163904,
 3.298199257838, 1.112839809943, 0.000090469247, 0.000012012901,
 1.061809140053, 0.113892311887, 0.000051725044, -0.000000368473,
 -4.11367589780242, 0.0185940177135711, -0.000018340182240486, 0.228172699660533, 0.00055088879246535,
 -19.8953296408788, 0.0766858214859992, -0.0000726639271038045, 1.37705092013579, 0.00257255876872813,
 -1.96730051813474, 0.0127768282753516, -0.0000134326424870467, 0.125354145077721, 0.000408173205033307,
 15.0, 7.0, 61, -0.0425,
 -5103.5465, -103.2944, -11.783695, -15.5467, 16.658, 0.341386389, 0.03894492, 0.051381575, 0.0, 0.0,
 -260.714285714287, 6.25, 0.0, -49.25, 0.803571428571439, 0.21875,
 6000, 147, 3.25, 4.25, 16, 24, 4.25, 17);

/*Creates a C-17 object*/
var C17 = new aircraftMDS(282.5, 241.36, 170.9, 585.0, 4.5, 58.96,
 31.73467029167, 0.989743669608, -0.0043149137723, -0.0642240850275, 0.00005804928, -0.00111004228507,
 1.0, 0.00225, 1.0, -0.001,
 0.246320503490156, 0.00906275433728003, 0.000458483810445982,
 0.739962476547397, -0.130206378986851, 661.129455909944, -2.28799249530959,
 0.768165733568, 0.187137734086, 0.000126560805, 0.000000358138,
 0.381646463716, 1.250278887724, 0.000552747494, 0.000011378658,
 0.646288319323, 0.093066858168, 0.000103839433, -0.000001181866,
 0.730068577, 0.014312226, -0.000021362504580405, 0.204191375, 0.000592283,
 -16.38205887, 0.127751984, -0.000174384, 1.39198126, 0.003565526,
 0.2573857831, 0.000459419581, -0.000000850006, 0.01076770546, 0.000032978865,
 10.0, 2.67, 57.5, -0.048333,
 -3453.1687, -207.14686, -13.52897, -19.67703, 15.21445, 0.849110, 0.055456217, 0.080657577, 0.0, 0.0,
 2647.910009, -4.1201061901, 0.0095053095053, -72.7475403384485, 2.01200314836676, 0.300681818181817,
 3500, 90, 2.25, 3.25, 16, 24, 2.75, 16.5);

/*Creates a C-130 object*/
var C130 = new aircraftMDS(78.0, 43.0, 53.0, 164.0, 0.8, 8.0,
 58.828846543414, 3.529168288956, -0.009825092212, -0.238433503513, 0.000973972948, -0.015457782260,
 1.0, 0.003, 1.0, -0.001,
 0.220902738806, 0.005456388441, 0.001010573113,
 0.739962476547397, -0.130206378986851, 661.129455909944, -2.28799249530959,
 0.919939347620, 0.177576636227, 0.000347380647, 0.000237542230,
 4.068901921019, 0.286553529526, -0.002770909951, 0.001170985342,
 0.173207750106, 0.016002475941, 0.000702896272, 0.000001175950,
 -2.983877886, -0.045011956, 0.000509625, 1.447135018, -0.00558139,
 -22.07517477, -0.081347346, 0.001624119, 4.462689967, -0.014344866,
 -0.051271152, -0.001162746, 0.0000138251262642665, 0.03669346629413, -0.000155475,
 10.0, 0.7, 55.5, -0.175,
 2113.034985, -620.5379, 10.93586, -64.2196285, 6.3673469, 5.8367347, 0.0, 0.604045, 0.1171256, 2.26351,
 2023.656462585, 0.31150793651, 0.0615079365079, -93.200255102041, 2.28635204081633, 1.13571428571429,
 3000, 80, 1.5, 2.25, 16, 18, 2.25, 16);

144

AircraftMDS Functions

Name Inputs Description
CriticalFieldLength (gross weight, elevation, temperature) Returns the critical field length.

LandingDistance (gross weight, elevation) Returns landing distance over a 50 ft obstacle.

TimeToClimb (gross weight, altitude, elevation) Returns time to climb to a given altitude.

DistToClimb
(gross weight, altitude, elevation,
climb average wind factor, time to

climb)
Returns distance to climb to a given altitude

FuelToClimb (gross weight, altitude, elevation) Returns fuel to climb to a given altitude

TimeToDescend (gross weight, altitude, elevation) Returns time to descend from a given altitude.

DistToDescend
(gross weight, altitude, elevation,

descent average wind factor, time to
descend)

Returns distance to descend from a given altitude

FuelToDescend (gross weight, altitude, elevation) Returns fuel to descend from a given altitude.

MachAirspeed (gross weight, altitude, fuel consumed) Returns Mach airspeed for 99% max range.

TrueAirspeed (altitude, mach) Returns true airspeed for a given Mach.

TaxiSpeed () Returns taxi speed.

ClimbSpeed () Returns climb speed.

DescentSpeed (gross weight) Returns descent speed.

ApproachSpeed (gross weight) Returns approach speed.

OptimumAltitude (distance, gross weight, azimuth) Returns optimum alt based off weight & direction.
OptimumAltitudeMaxGW (distance, azimuth) Returns optimum alt based off max weight & direction.

MaxDistance
(altitude, reserve alternate holding fuel,
payload, fuelConsumed, average wind

factor, delta t)

Returns the maximum distance that can be flown at a
given altitude given a payload and fuel consumed.

FuelConsumed
(altitude, reserve alternate holding

fuel, payload, distance, average wind
factor, delta t)

Returns the fuel consumed at a given altitude, given
payload, winds, temp and distance.

MaxDistanceForSortie
(maxPCNweight, elev1, elev2,

climbAWF, enrouteAWF,
descendAWF, enrouteDeltaT, alt)

Returns the maximum distance that can be flown at zero
payload considering pavement strength, climb &

descent.

AircraftCapableFor
SortieZeroPayload

(maxPCNweight, dist, elev1, elev2,
climbAWF, enrouteAWF,

descendAWF, enrouteDeltaT, az)

Returns boolean true if aircraft is capable of sortie zero
payload using the optimum altitude.

AircraftCapableFor
SortieZeroPayload

AltKnown

(maxPCNweight, dist, elev1, elev2,
climbAWF, enrouteAWF,

descendAWF, enrouteDeltaT, alt)

Returns boolean true if aircraft is capable of sortie zero
payload using the given altitude.

AircraftCapableFor
SortieGivenPayload

(maxPCNweight, dist, payload, elev1,
elev2, climbAWF, enrouteAWF,
descendAWF, enrouteDeltaT, az)

Returns boolean true if aircraft is capable of sortie given
payload using the optimum altitude.

AircraftCanClimb
AndDescend

GivenDistance
AndAltitude

(dist, alt, payload, elev1, elev2,
climbAWF, enrouteAWF,

descendAWF, enrouteDeltaT)

Returns boolean true if the distance to climb to and
descend from a given altitude is less than the enroute

distance

RouteCycle
TimeCalculator

(srtArr, augmentedBool,
transloadBool, stageBool)

Returns the cycle time from origin to destination &
back.

RouteDelivery
TimeCalculator

(srtArr, augmentedBool,
transloadBool, stageBool) Returns the delivery time from origin to destination.

145

Name Inputs Description
CargoThroughputTransload (enrouteTime, payload,

augmentedBool, stagingBool) Returns cargo throughput with transload.

GWwithinRange (gw) Returns boolean if gross weight is between Op wt and
max.

PayloadWithinRange (payload) Returns boolean if payload is between zero and acft
max.

DailyFuelConsumptionTrans (srtArr, augmented, stagebool) Returns daily fuel consumption with transload.

FuelConsumedIteration
GrossWeightFixed

(maxPCNWeight, alt, distance,
elev1, elev2, climbAWF,

enrouteAWF, descendAWF,
deltat)

Returns sortie parameters object that includes all
information for the sortie given an initial fixed gross

weight.

FuelConsumedIteration
PayloadFixed

(payload, alt, distance, elev1,
elev2, climbAWF, enrouteAWF,

descendAWF, deltat)

Returns sortie parameters object that includes all
information for the sortie given an initial fixed payload.

RunwayLengthIsShorter
ThanRegMin (rwyLength) Returns boolean true if runway length is longer than

regulation minimum.

RunwayWidthIsShorter
ThanRegMin (rwyWidth) Returns boolean true if runway width is wider than

regulation minimum.

AirfieldPavementCan
SupportTakeoff (maxPCNweight) Returns boolean true if airfield pavement strength can

support takeoff

// Determines the critical field length given the gross weight (gw) in Klbs, elevation of airfield (elev)
// in 1,000s of feet & temperature of the airfield (temp) in Deg C
aircraftMDS.prototype.CriticalFieldLength = function (gw, elev, temp) {
 var criticalFieldLength = 0.0;
 criticalFieldLength = this.CFLBeta0 + this.CFLBeta1 * elev + this.CFLBeta2 * Math.pow(elev, 2) +
 this.CFLBeta3 * temp + this.CFLBeta4 * gw + this.CFLBeta5 * gw * elev +
 this.CFLBeta6 * gw * Math.pow(elev, 2) + this.CFLBeta7 * gw * temp +
 this.CFLBeta8 * Math.pow(temp, 2) + this.CFLBeta9 * temp * elev;

 return criticalFieldLength;
}

// Determines the landing distance in feet given the gross weight (gw) in Klbs & elevation of airfield
// (elev) in 1,000s of feet.
aircraftMDS.prototype.LandingDistance = function (gw, elev) {
 var landingDistance = 0.0;
 landingDistance = this.landDistBeta0 + this.landDistBeta1 * gw +
 this.landDistBeta2 * Math.pow(gw, 2) + this.landDistBeta3 * elev +
 this.landDistBeta4 * Math.pow(elev, 2) + this.landDistBeta5 * gw * elev;

 return landingDistance;
}

// Determines the time to climb given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s of
// feet & the elevation of airfield (elev) in 1,000s of feet.
aircraftMDS.prototype.TimeToClimb = function (gw, alt, elev) {
 var timeToClimb = 0.0;
 if (alt > 5.0) {
 timeToClimb = this.timeToClimbBeta0 + this.timeToClimbBeta1 * alt +
 this.timeToClimbBeta2 * Math.pow(alt, 2) * Math.pow(gw, 3) / 1000000 +
 this.timeToClimbBeta3 * Math.pow(alt, 3) * Math.pow(gw, 3) / 1000000;
 if (elev >= 1.0) {
 timeToClimb = timeToClimb - (this.timeToClimbBeta0 + this.timeToClimbBeta1 * elev +
 this.timeToClimbBeta2 * Math.pow(elev, 2) * Math.pow(gw, 3) / 1000000 +
 this.timeToClimbBeta3 * Math.pow(elev, 3) * Math.pow(gw, 3) / 1000000);
 }

146

 }
 else {
 timeToClimb = ((alt - elev) / 5) * (this.timeToClimbBeta0 + this.timeToClimbBeta1 * 5 +
 this.timeToClimbBeta2 * 25 * Math.pow(gw, 3) / 1000000 +
 this.timeToClimbBeta3 * 125 * Math.pow(gw, 3) / 1000000);
 }

 if ((alt - elev) < 0)
 timeToClimb = 0;

 return timeToClimb;
}

// Determines the distance to climb given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s
// of feet, the elevation of airfield (elev) in 1,000s of feet, the climb average wind factor and the time
// to climb in minutes.
aircraftMDS.prototype.DistToClimb = function (gw, alt, elev, climbAWF, TimeToClimb) {
 var distToClimb = 0.0;
 if (alt > 5.0) {
 distToClimb = this.distToClimbBeta0 + this.distToClimbBeta1 * alt +
 this.distToClimbBeta2 * Math.pow(alt, 2) * Math.pow(gw, 3) / 1000000 +
 this.distToClimbBeta3 * Math.pow(alt, 3) * Math.pow(gw, 3) / 1000000 +
 (climbAWF * TimeToClimb / 60);
 if (elev >= 1.0) {
 distToClimb = distToClimb - (this.distToClimbBeta0 + this.distToClimbBeta1 * elev +
 this.distToClimbBeta2 * Math.pow(elev, 2) * Math.pow(gw, 3) / 1000000 +
 this.distToClimbBeta3 * Math.pow(elev, 3) * Math.pow(gw, 3) / 1000000 +
 (climbAWF * TimeToClimb / 60));
 }
 }
 else {
 distToClimb = ((alt - elev) / 5) * (this.distToClimbBeta0 + this.distToClimbBeta1 * 5 +
 this.distToClimbBeta2 * 25 * Math.pow(gw, 3) / 1000000 +
 this.distToClimbBeta3 * 125 * Math.pow(gw, 3) / 1000000) +
 (climbAWF * TimeToClimb / 60);
 }

 if ((alt - elev) < 0)
 distToClimb = 0;

 return distToClimb;
}

// Determines the fuel to climb given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s of
// feet & the elevation of airfield (elev) in 1,000s of feet.
aircraftMDS.prototype.FuelToClimb = function (gw, alt, elev) {
 var fuelToClimb = 0.0;
 if (alt > 5.0) {
 fuelToClimb = this.fuelToClimbBeta0 + this.fuelToClimbBeta1 * alt +
 this.fuelToClimbBeta2 * Math.pow(alt, 2) * Math.pow(gw, 3) / 1000000 +
 this.fuelToClimbBeta3 * Math.pow(alt, 3) * Math.pow(gw, 3) / 1000000;
 if (elev >= 1.0) {
 fuelToClimb = fuelToClimb - (this.fuelToClimbBeta0 + this.fuelToClimbBeta1 * elev +
 this.fuelToClimbBeta2 * Math.pow(elev, 2) * Math.pow(gw, 3) / 1000000 +
 this.fuelToClimbBeta3 * Math.pow(elev, 3) * Math.pow(gw, 3) / 1000000);
 }
 }
 else {
 fuelToClimb = ((alt - elev) / 5) * (this.fuelToClimbBeta0 + this.fuelToClimbBeta1 * 5 +
 this.fuelToClimbBeta2 * 25 * Math.pow(gw, 3) / 1000000 +
 this.fuelToClimbBeta3 * 125 * Math.pow(gw, 3) / 1000000);
 }

 if ((alt - elev) < 0)
 fuelToClimb = 0;

 return fuelToClimb;

147

}

// Determines the time to descend given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s of
// feet & the elevation of airfield (elev) in 1,000s of feet.
aircraftMDS.prototype.TimeToDescend = function (gw, alt, elev) {
 var timeToDescend = 0.0;
 if (alt > 5.0) {
 timeToDescend = this.timeToDescendBeta0 + this.timeToDescendBeta1 * gw +
 this.timeToDescendBeta2 * Math.pow(gw, 2) +
 this.timeToDescendBeta3 * alt + this.timeToDescendBeta4 * gw * alt;
 if (elev >= 1.0) {
 timeToDescend = timeToDescend - (this.timeToDescendBeta0 + this.timeToDescendBeta1 * gw +
 this.timeToDescendBeta2 * Math.pow(gw, 2) +
 this.timeToDescendBeta3 * elev + this.timeToDescendBeta4 * gw * elev);
 }
 }
 else {
 timeToDescend = ((alt - elev) / 5) * (this.timeToDescendBeta0 + this.timeToDescendBeta1 * gw +
 this.timeToDescendBeta2 * Math.pow(gw, 2) +
 this.timeToDescendBeta3 * 5 + this.timeToDescendBeta4 * gw * 5);
 }

 if ((alt - elev) < 0)
 timeToDescend = 0;

 return timeToDescend;
}

// Determines the distance to descend given the gross weight (gw) in Klbs, enroute altitude (alt) in
// 1,000s of feet, the elevation of airfield (elev) in 1,000s of feet, the average wind factor for descent
// and the time to descend in minutes.
aircraftMDS.prototype.DistToDescend = function (gw, alt, elev, descendAWF, timeToDescend) {
 var distToDescend = 0.0;
 if (alt > 5.0) {
 distToDescend = this.distToDescendBeta0 + this.distToDescendBeta1 * gw +
 this.distToDescendBeta2 * Math.pow(gw, 2) + this.distToDescendBeta3 * alt +
 this.distToDescendBeta4 * gw * alt + (descendAWF * timeToDescend / 60);
 if (elev >= 1.0) {
 distToDescend = distToDescend - (this.distToDescendBeta0 + this.distToDescendBeta1 * gw +
 this.distToDescendBeta2 * Math.pow(gw, 2) +
 this.distToDescendBeta3 * elev + this.distToDescendBeta4 * gw * elev +
 (descendAWF * timeToDescend / 60));
 }
 }
 else {
 distToDescend = ((alt - elev) / 5) * (this.distToDescendBeta0 + this.distToDescendBeta1 * gw +
 this.distToDescendBeta2 * Math.pow(gw, 2) +
 this.distToDescendBeta3 * 5 + this.distToDescendBeta4 * gw * 5) +
 (descendAWF * timeToDescend / 60);
 }

 if ((alt - elev) < 0)
 distToDescend = 0;
 return distToDescend;
}

// Determine the fuel to descend given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s of
// feet & the elevation of airfield (elev) in 1,000s of feet.
aircraftMDS.prototype.FuelToDescend = function (gw, alt, elev) {
 var fuelToDescend = 0.0;
 if (alt > 5.0) {
 fuelToDescend = this.fuelToDescendBeta0 + this.fuelToDescendBeta1 * gw +
 this.fuelToDescendBeta2 * Math.pow(gw, 2) + this.fuelToDescendBeta3 * alt +
 this.fuelToDescendBeta4 * gw * alt;
 if (elev >= 1.0) {
 fuelToDescend = fuelToDescend - (this.fuelToDescendBeta0 + this.fuelToDescendBeta1 * gw +
 this.fuelToDescendBeta2 * Math.pow(gw, 2) + this.fuelToDescendBeta3 * elev +
 this.fuelToDescendBeta4 * gw * elev);
 }

148

 }
 else {
 fuelToDescend = ((alt - elev) / 5) * (this.fuelToDescendBeta0 + this.fuelToDescendBeta1 * gw +
 this.fuelToDescendBeta2 * Math.pow(gw, 2) + this.fuelToDescendBeta3 * 5 +
 this.fuelToDescendBeta4 * gw * 5);
 }

 if ((alt - elev) < 0)
 fuelToDescend = 0;

 return fuelToDescend;
}

// Determine the mach airspeed given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s of
// feet & the fuel consumed (fc) in 1,000s of pounds.
aircraftMDS.prototype.MachAirspeed = function (gw, alt, fc) {
 var mach = 0.0;
 mach = this.machBeta0 + this.machBeta1 * alt + this.machBeta2 * (gw - fc / 2.0);
 return mach;
}

// Determine the true airspeed given the gross weight (gw) in Klbs, enroute altitude (alt) in 1,000s of
// feet & the fuel consumed (fc) in 1,000s of pounds.
aircraftMDS.prototype.TrueAirspeed = function (alt, mach) {
 var tas = 0.0;
 tas = this.trueAirspeedBeta0 + this.trueAirspeedBeta1 * alt + this.trueAirspeedBeta2 * mach +
 this.trueAirspeedBeta3 * alt * mach;
 return tas;
}

// Given the MDS, returns a string of the taxi speed
aircraftMDS.prototype.TaxiSpeed = function () {
 var taxiSpeed = "";
 switch (this) {
 case C5:
 taxiSpeed = "Max 30 Knots"; break;
 case C17:
 taxiSpeed = "Max 40 Knots"; break;
 case C130:
 taxiSpeed = "Max 20 Knots:
20 deg nose deflection
Max 5 Knots:
60 deg nose
 deflection"; break;
 default: break;
 }
 return taxiSpeed;
}

// Given the MDS, returns a string of the climb speed
aircraftMDS.prototype.ClimbSpeed = function () {
 var climbSpeed = "";
 switch (this) {
 case C5:
 climbSpeed = "250 KCAS to 10,
then 270 to 29,
then .7 Mach"; break;
 case C17:
 climbSpeed = "250 KCAS to 10,
then .74 Mach"; break;
 case C130:
 climbSpeed = "180 KIAS to 10,
then 170 KIAS to 15
then 160 KIAS to 25
4 eng
 climb above 25"; break;
 default: break;
 }
 return climbSpeed;
}

// Given the MDS and gross weight at start of descent, returns a string of the descent speed
aircraftMDS.prototype.DescentSpeed = function (gw) {
 var descentSpeed = "";
 var c130jMaxRangeDescent = 91.217 + 0.565217 * gw;
 switch (this) {
 case C5:
 descentSpeed = "0.72 Mach or 300 KCAS
whichever is less"; break;

149

 case C17:
 descentSpeed = "0.74 Mach until
340 KCAS or 10,
250 KCAS below 10"; break;
 case C130:
 descentSpeed = c130jMaxRangeDescent.toFixed(0) + " KIAS"; break;
 default: break;
 }
 return descentSpeed;
}

// Given the MDS and gross weight in Klbs at start of approach, returns the approach speed
aircraftMDS.prototype.ApproachSpeed = function (gw) {
 var approachSpeed = 0.0;
 switch (this) {
 case C5:
 approachSpeed = 63.9 + 0.11111 * gw; break;
 case C17:
 approachSpeed = 75 + 0.126364 * gw; break;
 case C130:
 approachSpeed = 70 + 0.5 * gw; break;
 default: break;
 }
 return approachSpeed;
}

// Given the distance in NMs, the gross weight in KLbs and the azimuth, returns the optimum enroute
// altitude in 1,000s of feet
aircraftMDS.prototype.OptimumAltitude = function (dist, gw, az) {
 var optimumAltitude = 0.0;
 var optimumAltitudeByDist = dist / 10.0;
 optimumAltitude = this.optimumAltitudeBeta0 + this.optimumAltitudeBeta1 * gw;

 if (optimumAltitudeByDist < optimumAltitude)
 optimumAltitude = optimumAltitudeByDist;

 if ((az >= 0 && az < 180) || az == 360) {
 optimumAltitude = optimumAltitude - ((optimumAltitude + 1.0) % 2) + 2;
 }
 else {
 optimumAltitude = optimumAltitude - (optimumAltitude % 2) + 2;
 }
 return optimumAltitude;
}

// Given the distance in NMs and the azimuth, returns the optimum enroute altitude in 1,000s of feet for
// aircraft max gross weight
aircraftMDS.prototype.OptimumAltitudeMaxGW = function (dist, az) {
 var optimumAltitude = 0.0;
 var optimumAltitudeByDist = dist / 10.0;
 optimumAltitude = this.optimumAltitudeBeta0 + this.optimumAltitudeBeta1 * this.maxGrossTakeoffWeight;

 if (optimumAltitudeByDist < optimumAltitude)
 optimumAltitude = optimumAltitudeByDist;

 if ((az >= 0 && az < 180) || az == 360) {
 optimumAltitude = optimumAltitude - ((optimumAltitude + 1.0) % 2) + 2;
 }
 else {
 optimumAltitude = optimumAltitude - (optimumAltitude % 2) + 2;
 }
 return optimumAltitude;
}

// Given the altitude in 1,000s of feet, the fuel for reserve, alternate and holding (rah) in Klbs, the
// payload in Klbs, the fuel consumed in Klbs, the average wind factor (awf) and the delta t from standard
// day in deg C, determines the max distance possible
aircraftMDS.prototype.MaxDistance = function (altitude, rah, payload, fuelConsumed, awf, deltat) {
 var distance = 0.0;

150

 var tempAdjust = this.rangeTempAdjustBeta0 + deltat * this.rangeTempAdjustBeta1;
 var windAdjust = this.rangeWindAdjustBeta0 + awf * this.rangeWindAdjustBeta1;

 //Use Formula distance = A*g^3 + B*g^2 + C*g coefficients. g represents fuel consumed.
 var A = tempAdjust * windAdjust * this.rangeBeta4 / 3.0;
 var B = tempAdjust * windAdjust * (this.rangeBeta3 / 2.0 + this.rangeBeta4 * (this.operatingWeight +
 payload + this.fuelSTTO + this.fuelApproach + rah) +
 this.rangeBeta5 * altitude / 2.0); //(β_3/2+β_4*(EW+w)+β_5/2*Alt),
 var C = tempAdjust * windAdjust * (this.rangeBeta0 + this.rangeBeta1 * altitude +
 this.rangeBeta2 * Math.pow(altitude, 2.0) +
 this.rangeBeta3 * (this.operatingWeight + payload + this.fuelSTTO + this.fuelApproach + rah) +
 this.rangeBeta4 * Math.pow(this.operatingWeight + payload + this.fuelSTTO +
 this.fuelApproach + rah, 2.0) +
 this.rangeBeta5 * altitude * (this.operatingWeight + payload + this.fuelSTTO +
 this.fuelApproach + rah));
 //(β_0+β_1*Alt+β_2*A〖lt〗^2+β_3*(EW+w)+β_4*(EW+w)^2+β_5*Alt*(EW+w))
 var G = fuelConsumed;

 distance = A * Math.pow(G, 3.0) + B * Math.pow(G, 2.0) + C * G;

 return distance;
}

// Given the altitude in 1,000s of feet, the fuel for reserve, alternate and holding (rah) in Klbs, the
// payload in Klbs, the distance in NMs, the average wind factor (awf) and the delta t from standard day
// in deg C, determines the fuel consumed in Klbs
aircraftMDS.prototype.FuelConsumed = function (altitude, rah, payload, distance, awf, deltat) {
 var fuelConsumed = 0.0;
 var tempAdjust = this.rangeTempAdjustBeta0 + deltat * this.rangeTempAdjustBeta1;
 var windAdjust = this.rangeWindAdjustBeta0 + awf * this.rangeWindAdjustBeta1;

 //Determine Cubic Formula A*g^3 + B*g^2 + C*g + D = 0 coefficients. g represents fuel consumed.
 var A = tempAdjust * windAdjust * this.rangeBeta4 / 3.0;
 var B = tempAdjust * windAdjust * (this.rangeBeta3 / 2.0 + this.rangeBeta4 * (this.operatingWeight +
 payload + this.fuelSTTO + this.fuelApproach + rah) +
 this.rangeBeta5 * altitude / 2.0); //(β_3/2+β_4*(EW+w)+β_5/2*Alt),
 var C = tempAdjust * windAdjust * (this.rangeBeta0 + this.rangeBeta1 * altitude +
 this.rangeBeta2 * Math.pow(altitude, 2.0) +
 this.rangeBeta3 * (this.operatingWeight + payload + this.fuelSTTO + this.fuelApproach + rah) +
 this.rangeBeta4 * Math.pow(this.operatingWeight + payload + this.fuelSTTO +
 this.fuelApproach + rah, 2.0) +
 this.rangeBeta5 * altitude * (this.operatingWeight + payload + this.fuelSTTO +
 this.fuelApproach + rah));
 //(β_0+β_1*Alt+β_2*A〖lt〗^2+β_3*(EW+w)+β_4*(EW+w)^2+β_5*Alt*(EW+w))
 var D = -distance;

 var commonTerm1 = 2.0 * Math.pow(B, 3.0) - 9.0 * A * B * C + 27.0 * Math.pow(A, 2.0) * D;
 var commonTerm2 = 4.0 * Math.pow((Math.pow(B, 2.0) - 3.0 * A * C), 3.0);
 var cubeRoot1 = 0.5 * (commonTerm1 + Math.sqrt(Math.pow(commonTerm1, 2.0) - commonTerm2));
 var cubeRoot2 = 0.5 * (commonTerm1 - Math.sqrt(Math.pow(commonTerm1, 2.0) - commonTerm2));

 if (cubeRoot1 < 0)
 cubeRoot1 = -Math.pow(-cubeRoot1, (1.0 / 3.0));
 else
 cubeRoot1 = Math.pow(cubeRoot1, (1.0 / 3.0));

 if (cubeRoot2 < 0)
 cubeRoot2 = -Math.pow(-cubeRoot2, (1.0 / 3.0));
 else
 cubeRoot2 = Math.pow(cubeRoot2, (1.0 / 3.0));

 //g=-B/3A
 // -1/3A ∛(1/2 [2B^3-9ABC+27A^2 D+√((2B^3-9ABC+27A^2 D)^2-4〖(B^2-3AC)〗^3)])
 // -1/3A ∛(1/2 [2B^3-9ABC+27A^2 D-√((2B^3-9ABC+27A^2 D)^2-4〖(B^2-3AC)〗^3)])
 fuelConsumed = -(B / (3.0 * A)) - (1.0 / (3.0 * A)) * cubeRoot1 - (1.0 / (3.0 * A)) * cubeRoot2;

 return fuelConsumed;
}

151

// Determines the maximum distance that a given aircraft MDS can fly no payload at a given altitude
aircraftMDS.prototype.MaxDistanceForSortie = function (maxPCNweight, payload, elev1, elev2, climbAWF,
 enrouteAWF, descendAWF, enrouteDeltaT, alt) {
 //Determine maximum gross takeoff weight
 var maxGrossTakeoffWeight = this.maxGrossTakeoffWeight;
 if (maxPCNweight < this.maxGrossTakeoffWeight)
 maxGrossTakeoffWeight = maxPCNweight;

 // Determine gross weight for maximum distance
 var gwForMaxDist = this.operatingWeight + this.maxFuelLoad + payload;
 if (gwForMaxDist > maxGrossTakeoffWeight)
 gwForMaxDist = maxGrossTakeoffWeight;

 // Determine Distance and Fuel for climb for maximum distance
 var maxDistTimeToClimb = this.TimeToClimb(gwForMaxDist, alt, elev1);
 var maxDistDistToClimb = this.DistToClimb(gwForMaxDist, alt, elev1, climbAWF, maxDistTimeToClimb);
 var maxDistFuelToClimb = this.FuelToClimb(gwForMaxDist, alt, elev1);

 // Determine Distance and Fuel for climb for maximum distance
 var gwForMaxDistDescent = gwForMaxDist - this.maxFuelLoad + this.fuelRAH;
 var maxDistTimeToDescend = this.TimeToDescend(gwForMaxDistDescent, alt, elev2);
 var maxDistDistToDescend = this.DistToDescend(gwForMaxDistDescent, alt, elev2, descendAWF,
 maxDistTimeToDescend);
 var maxDistFuelToDescend = this.FuelToDescend(gwForMaxDistDescent, alt, elev2);

 //Determine the maximum distance filling the tanks to max for airfield
 var maxDistance = this.MaxDistance(alt, this.fuelRAH, payload,
 gwForMaxDist - this.operatingWeight - payload - this.fuelSTTO –
 maxDistFuelToClimb - maxDistFuelToDescend -
 this.fuelRAH, enrouteAWF, enrouteDeltaT) + maxDistDistToClimb +
 maxDistDistToDescend;

 return maxDistance;
}

// Determines if the aircraft MDS is capable of flying a given distance
aircraftMDS.prototype.AircraftCapableForSortieZeroPayload = function (maxPCNweight, dist, elev1, elev2,
 climbAWF, enrouteAWF, descendAWF, enrouteDeltaT, az) {
 var aircraftCapable = true;

 //Determine maximum gross takeoff weight
 var maxGrossTakeoffWeight = this.maxGrossTakeoffWeight;
 if (maxPCNweight < this.maxGrossTakeoffWeight)
 maxGrossTakeoffWeight = maxPCNweight;

 // Determine gross weight for maximum distance
 var gwForMaxDist = this.operatingWeight + this.maxFuelLoad;
 if (gwForMaxDist > maxGrossTakeoffWeight)
 gwForMaxDist = maxGrossTakeoffWeight;

 // Determine Optimum Altitude for maximum distance zero payload
 var optimumAltForMaxDist = this.OptimumAltitude(dist, gwForMaxDist, az);

 //Determine the maximum distance using zero payload and filling the tanks to max for airfield
 var maxDistance = this.MaxDistanceForSortie(maxPCNweight, 0, elev1, elev2, climbAWF, enrouteAWF,
descendAWF, enrouteDeltaT, optimumAltForMaxDist);

 if (dist > maxDistance)
 aircraftCapable = false;
 return aircraftCapable;
}

// Determines if an aircraft MDS is capable of flying a sortie with no payload at a given altitude
aircraftMDS.prototype.AircraftCapableForSortieZeroPayloadAltKnown = function (maxPCNweight, dist, elev1,
 elev2, climbAWF, enrouteAWF, descendAWF, enrouteDeltaT, alt) {
 var aircraftCapable = true;

 //Determine the maximum distance using zero payload and filling the tanks to max for airfield

152

 var maxDistance = this.MaxDistanceForSortie(maxPCNweight, 0, elev1, elev2, climbAWF, enrouteAWF,
 descendAWF, enrouteDeltaT, alt);

 if (dist > maxDistance)
 aircraftCapable = false;
 return aircraftCapable;
}

// Determines if an aircraft MDS is capable of flying a sortie with a given payload at a given altitude
aircraftMDS.prototype.AircraftCapableForSortieGivenPayload = function (maxPCNweight, dist, payload, elev1,
 elev2, climbAWF, enrouteAWF, descendAWF, enrouteDeltaT, az) {
 var aircraftCapable = true;

 //Determine maximum gross takeoff weight
 var maxGrossTakeoffWeight = this.maxGrossTakeoffWeight;
 if (maxPCNweight < this.maxGrossTakeoffWeight)
 maxGrossTakeoffWeight = maxPCNweight;

 // Determine gross weight for maximum distance
 var gwForMaxDist = this.operatingWeight + this.maxFuelLoad + payload;
 if (gwForMaxDist > maxGrossTakeoffWeight)
 gwForMaxDist = maxGrossTakeoffWeight;

 // Determine Optimum Altitude for maximum distance zero payload
 var optimumAltForMaxDist = this.OptimumAltitude(dist, gwForMaxDist, az);

 //Determine the maximum distance using given payload and filling the tanks to max for airfield
 var maxDistance = this.MaxDistanceForSortie(maxPCNweight, payload, elev1, elev2, climbAWF, enrouteAWF,
 descendAWF, enrouteDeltaT, optimumAltForMaxDist);

 if (dist > maxDistance)
 aircraftCapable = false;
 return aircraftCapable;
}

// Determines if an aircraft MDS is capable of climbing to and descending from a given altitude over the
given distance
aircraftMDS.prototype.AircraftCanClimbAndDescendGivenDistanceAndAltitude = function (dist, alt, payload,
 elev1, elev2, climbAWF, enrouteAWF, descendAWF, enrouteDeltaT) {
 var aircraftCapable = true;

 var initFuelConsumed = this.FuelConsumed(alt, this.fuelRAH, payload, dist, enrouteAWF, enrouteDeltaT);
 var gw = this.operatingWeight + payload + this.fuelSTTO + this.fuelRAH + initFuelConsumed;
 var timeClimb = this.TimeToClimb(gw, alt, elev1);
 var distClimb = this.DistToClimb(gw, alt, elev1, climbAWF, timeClimb);
 var fuelClimb = this.FuelToClimb(gw, alt, elev1);
 var gwAtDescent = gw - this.fuelSTTO - fuelClimb - initFuelConsumed;
 var timeDescend = this.TimeToDescend(gwAtDescent, alt, elev2);
 var distDescend = this.DistToDescend(gwAtDescent, alt, elev2, descendAWF, timeDescend);
 var distEnroute = dist - distClimb - distDescend;

 if (distEnroute < 0.0)
 aircraftCapable = false;

 return aircraftCapable;
}

// Determines the cycle time for a given route
aircraftMDS.prototype.RouteCycleTimeCalculator = function (srtArr, augmentedBool, transloadBool,
 stageBool) {
 var FDPtime;
 var cycleTime = 0.0;

 if (stageBool)
 cycleTime = RouteCycleTimeCalculatorStage(srtArr, this.showToTakeoffTime, this.gndTimeTransload,
 this.gndTimeRefuel);
 else {
 if (augmentedBool)
 FDPtime = this.augFDP;

153

 else
 FDPtime = this.normFDP;
 cycleTime = RouteCycleTimeCalculatorNoStage(srtArr, this.showToTakeoffTime, FDPtime,
 this.gndTimeTransload, this.gndTimeRefuel, this.crewRestToTakeoffTime);
 }

 return cycleTime;
}

// Determines the delivery time for a given route
aircraftMDS.prototype.RouteDeliveryTimeCalculator = function (srtArr, augmentedBool, transloadBool,
 stageBool) {
 var FDPtime;
 var deliveryTime = 0.0;

 if (stageBool)
 deliveryTime = RouteDeliveryTimeCalculatorStage(srtArr, this.showToTakeoffTime,
 this.gndTimeTransload, this.gndTimeRefuel);
 else {
 if (augmentedBool)
 FDPtime = this.augFDP;
 else
 FDPtime = this.normFDP;
 deliveryTime = RouteDeliveryTimeCalculatorNoStage(srtArr, this.showToTakeoffTime, FDPtime,
 this.gndTimeTransload, this.gndTimeRefuel, this.crewRestToTakeoffTime);
 }
 return deliveryTime;
}

// Determines the cycle time for a given route assuming staging available at every stop
function RouteCycleTimeCalculatorStage(srtArr, showToTakeoff, gndTimeTrans, gndTimeRefuel) {
 var cycleTime = 0.0;

 for (i = 0; i < srtArr.length; i++) {
 cycleTime += srtArr[i].enrouteTime + gndTimeRefuel;
 }
 cycleTime = (cycleTime * 2) - (2 * gndTimeRefuel) + (2 * gndTimeTrans);

 return cycleTime;
}

// Determines the delivery time for a given route assuming staging available at every stop
function RouteDeliveryTimeCalculatorStage(srtArr, showToTakeoff, gndTimeTrans, gndTimeRefuel) {
 var deliveryTime = 0.0;

 for (i = 0; i < srtArr.length; i++) {
 deliveryTime += srtArr[i].enrouteTime + gndTimeRefuel;
 }
 deliveryTime += showToTakeoff - gndTimeRefuel;

 return deliveryTime;
}

// Determines the cycle time for a given route assuming staging is not available at every stop
function RouteCycleTimeCalculatorNoStage(srtArr, showToTakeoff, fdp, gndTimeTrans, gndTimeRefuel,
 crewRestToTakeoff) {
 var cycleTime = showToTakeoff;
 var fdpStartTime = 0.0;

 // Loop through sorties forward (source to destination)
 for (var i = 0; i < srtArr.length; i++) {
 cycleTime += srtArr[i].enrouteTime;
 if (i < (srtArr.length - 1)) {
 if (cycleTime - fdpStartTime + gndTimeRefuel + srtArr[i + 1].enrouteTime > fdp) {
 cycleTime += crewRestToTakeoff;
 fdpStartTime = cycleTime - showToTakeoff;
 }
 else
 cycleTime += gndTimeRefuel;

154

 }
 else {
 if (cycleTime - fdpStartTime + gndTimeTrans + srtArr[i].enrouteTime > fdp) {
 cycleTime += crewRestToTakeoff;
 fdpStartTime = cycleTime - showToTakeoff;
 }
 else
 cycleTime += gndTimeTrans;
 }
 }

 // Loop through sorties in reverse (destination to source)
 for (var j = srtArr.length - 1; j > -1; j--) {
 cycleTime += srtArr[j].enrouteTime;
 if (j > 0) {
 if (cycleTime - fdpStartTime + gndTimeRefuel + srtArr[j - 1].enrouteTime > fdp) {
 cycleTime += crewRestToTakeoff;
 fdpStartTime = cycleTime - showToTakeoff;
 }
 else {
 cycleTime += gndTimeRefuel;
 }
 }
 else {
 cycleTime += crewRestToTakeoff; ;
 }

 }
 cycleTime -= showToTakeoff;

 return cycleTime;
}

// Determines the delivery time for a given route assuming staging is not available at every stop
function RouteDeliveryTimeCalculatorNoStage(srtArr, showToTakeoff, fdp, gndTimeTrans, gndTimeRefuel,
 crewRestToTakeoff) {

 var deliveryTime = showToTakeoff;
 var fdpStartTime = 0.0;

 for (var i = 0; i < srtArr.length; i++) {
 deliveryTime += srtArr[i].enrouteTime;
 if (i < (srtArr.length - 1)) {
 if (deliveryTime - fdpStartTime + gndTimeRefuel + srtArr[i + 1].enrouteTime > fdp) {
 deliveryTime += crewRestToTakeoff;
 fdpStartTime = deliveryTime - showToTakeoff;
 }
 else
 deliveryTime += gndTimeRefuel;
 }
 }
 return deliveryTime;
}

// Determines the cargo throughput for a given route given transload operations
aircraftMDS.prototype.CargoThroughputTransload = function (enrouteTime, payload, augmentedBool,
 stagingBool) {
 var cargoThru = 0.0; var cycles = 0; var sorties = 0; var lastFlight = false;
 var FDPtime = 0.0; var timeRemain = 0.0; var cycleTime = 0.0; var sortieCycleTime = 0.0;

 // determine time parameters
 crewRestToTakeoffTime = selectMDS.crewRestToTakeoffTime;
 if (augmentedBool)
 FDPtime = this.augFDP;
 else
 FDPtime = this.normFDP;

 // determine number of cycles
 timeRemain = FDPtime - this.showToTakeoffTime;

155

 cycleTime = enrouteTime + this.gndTimeTransload;
 cycles = Math.floor(timeRemain / cycleTime);

 //determine if the last flight is possible
 if (enrouteTime <= (timeRemain - (cycles * cycleTime)))
 lastFlight = true;
 else
 lastFlight = false;

 // determine the number of sorties
 if (lastFlight)
 sorties = cycles + 1;
 else
 sorties = cycles;

 // determine overall sortie cycle time
 if (stagingBool)
 sortieCycleTime = sorties * (enrouteTime + this.gndTimeTransload);
 else
 sortieCycleTime = sorties * enrouteTime + (sorties - 1) * this.gndTimeTransload +
 this.crewRestToTakeoffTime;

 // calculate throughput
 cargoThru = 24 * payload * (sorties / 2) / sortieCycleTime;

 return cargoThru;
}

// Determine if the given gross weight is more than operating weight but less than aircraft max gross
// weight
aircraftMDS.prototype.GWwithinRange = function(gw) {
 if (gw >= this.operatingWeight && gw <= this.maxGrossTakeoffWeight)
 return true;
 else
 return false;
}

// Determines if the payload is more than 0 but less than the aircraft maximum allowed
aircraftMDS.prototype.PayloadWithinRange = function (payload) {
 if (payload >= 0 && payload <= this.acftMaxPayload)
 return true;
 else
 return false;
}

// Determines the daily fuel consumption given transload operations
aircraftMDS.prototype.DailyFuelConsumptionTrans = function (srtArr, augmented, stagebool, maxCargoThru) {
 var dailyFuelConsumption = 0.0;
 var FDPTime;
 var fuelSumArr = new Array();
 var fuelSum, currTime;
 var cargoThruAcft = new Array();
 var sumCargoThruAcft = 0;

 if (augmented) {
 FDPTime = this.augFDP;
 }
 else {
 FDPTime = this.normFDP;
 }
 fuelSum = 0.0;
 totalFuelSum = 0.0;

 for (i = 0; i < srtArr.length; i++) {
 cargoThruAcft[i] = maxCargoThru / srtArr[i].cargoThroughput;
 sumCargoThruAcft += cargoThruAcft[i];
 currTime = 0.0;

156

 fuelSum = 0.0;
 currTime += this.showToTakeoffTime;
 for (k = 0; k < 10; k++) {
 if (currTime + srtArr[i].enrouteTime < FDPTime) {
 currTime += srtArr[i].enrouteTime;
 fuelSum += srtArr[i].enrouteFuel;
 currTime += this.gndTimeTransload;
 }
 }
 if (stagebool) {
 currTime += -this.showToTakeoffTime
 }
 else {
 currTime += this.crewRestToTakeoffTime - this.gndTimeTransload - this.showToTakeoffTime;
 }
 fuelSumArr[i] = 24 * fuelSum / currTime;
 }
 for (i = 0; i < srtArr.length; i++) {
 totalFuelSum += fuelSumArr[i] * (cargoThruAcft[i] / sumCargoThruAcft);
 }
 dailyFuelConsumption = totalFuelSum;

 return dailyFuelConsumption;
}

// Determines sortie parameters by iterating through the fuel consumed function
aircraftMDS.prototype.FuelConsumedIterationGrossWeightFixed = function (maxPCNWeight, alt, distance,
 elev1, elev2, climbAWF, enrouteAWF, descendAWF, deltat) {
 var tempRampFuel = 0.0;
 var deltaRampFuel = 100.0;
 var maxRampFuelDelta = 0.1;

 //Loop to find actual fuel consumed
 var fuelSTTO = this.fuelSTTO;
 var fuelApproach = this.fuelApproach;
 var gw = this.maxGrossTakeoffWeight;

 if (maxPCNWeight < gw)
 gw = maxPCNWeight;
 var payload = gw - this.operatingWeight - fuelSTTO - fuelApproach - this.fuelRAH;
 if (payload > this.acftMaxPayload)
 payload = this.acftMaxPayload;
 var initFuelConsumed = this.FuelConsumed(alt, this.fuelRAH, payload, distance, enrouteAWF, deltat);

 var timeClimb = this.TimeToClimb(gw, alt, elev1);
 var distClimb = this.DistToClimb(gw, alt, elev1, climbAWF, timeClimb);
 var fuelClimb = this.FuelToClimb(gw, alt, elev1);
 var gwAtDescent = gw - fuelSTTO - fuelClimb - initFuelConsumed;
 var timeDescend = this.TimeToDescend(gwAtDescent, alt, elev2);
 var distDescend = this.DistToDescend(gwAtDescent, alt, elev2, descendAWF, timeDescend);
 var fuelDescend = this.FuelToDescend(gwAtDescent, alt, elev2);
 var distEnroute = distance - distClimb - distDescend;
 var fuelEnroute = this.FuelConsumed(alt, this.fuelRAH, payload, distEnroute, enrouteAWF, deltat);

 var rampFuel = fuelSTTO + fuelClimb + fuelEnroute + fuelDescend + fuelApproach + this.fuelRAH;
 payload = gw - this.operatingWeight - rampFuel;
 if (payload > this.acftMaxPayload)
 payload = this.acftMaxPayload;

 tempRampFuel = rampFuel;

 while (Math.abs(deltaRampFuel) > maxRampFuelDelta) {

 //Determine fuel required to fly given distance and payload
 fuelEnroute = this.FuelConsumed(alt, this.fuelRAH, payload, distEnroute, enrouteAWF, deltat)
 rampFuel = fuelSTTO + fuelClimb + fuelEnroute + fuelDescend + fuelApproach + this.fuelRAH;

157

 //Recalculate payload
 payload = gw - this.operatingWeight - rampFuel;
 if (payload >= this.acftMaxPayload) {
 payload = this.acftMaxPayload;
 //Recalculate gross weight
 gw = this.operatingWeight + rampFuel + payload;
 }

 //Recalculate climb parameteres given new gross weight
 timeClimb = this.TimeToClimb(gw, alt, elev1);
 distClimb = this.DistToClimb(gw, alt, elev1, climbAWF, timeClimb);
 fuelClimb = this.FuelToClimb(gw, alt, elev1);
 gwAtDescent = gw - fuelSTTO - fuelClimb - fuelEnroute;
 timeDescend = this.TimeToDescend(gwAtDescent, alt, elev2);
 distDescend = this.DistToDescend(gwAtDescent, alt, elev2, descendAWF, timeDescend);
 fuelDescend = this.FuelToDescend(gwAtDescent, alt, elev2);
 distEnroute = distance - distClimb - distDescend;

 deltaRampFuel = rampFuel - tempRampFuel;
 tempRampFuel = rampFuel;
 }
 var mach = this.MachAirspeed(gw, alt, fuelEnroute);
 var tas = this.TrueAirspeed(alt, mach);
 var groundSpeed = tas + enrouteAWF;
 var timeEnroute = distEnroute / groundSpeed;

 var sortieParam = new sortieParameters(this.operatingWeight, fuelSTTO, timeClimb, distClimb,
 fuelClimb, gw, payload, alt, rampFuel, timeEnroute,
 distEnroute, fuelEnroute, mach, tas, timeDescend, distDescend,
 fuelDescend, this.timeApproach, fuelApproach);

 return sortieParam;
}

// Determines sortie parameters by iterating through the fuel consumed function
aircraftMDS.prototype.FuelConsumedIterationPayloadFixed = function (payload, alt, distance, elev1, elev2,
 climbAWF, enrouteAWF, descendAWF, deltat) {
 var tempRampFuel = 0.0;
 var deltaRampFuel = 100.0;
 var maxRampFuelDelta = 0.1;

 //Loop to find actual fuel consumed
 var fuelSTTO = this.fuelSTTO;
 var fuelApproach = this.fuelApproach;
 var initFuelConsumed = this.FuelConsumed(alt, this.fuelRAH, payload, distance, enrouteAWF, deltat);

 var gw = this.operatingWeight + payload + fuelSTTO + initFuelConsumed + fuelApproach + this.fuelRAH;
 var timeClimb = this.TimeToClimb(gw, alt, elev1);
 var distClimb = this.DistToClimb(gw, alt, elev1, climbAWF, timeClimb);
 var fuelClimb = this.FuelToClimb(gw, alt, elev1);
 var gwAtDescent = gw - fuelSTTO - fuelClimb - initFuelConsumed;
 var timeDescend = this.TimeToDescend(gwAtDescent, alt, elev2);
 var distDescend = this.DistToDescend(gwAtDescent, alt, elev2, descendAWF, timeDescend);
 var fuelDescend = this.FuelToDescend(gwAtDescent, alt, elev2);
 var distEnroute = distance - distClimb - distDescend;
 var fuelEnroute = this.FuelConsumed(alt, this.fuelRAH, payload, distEnroute, enrouteAWF, deltat);
 var rampFuel = fuelSTTO + fuelClimb + fuelEnroute + fuelDescend + fuelApproach + this.fuelRAH;
 gw = this.operatingWeight + rampFuel + payload;

 tempRampFuel = rampFuel;

 while (Math.abs(deltaRampFuel) > maxRampFuelDelta) {
 //Determine fuel required to fly given distance and payload
 fuelEnroute = this.FuelConsumed(alt, this.fuelRAH, payload, distEnroute, enrouteAWF, deltat)
 rampFuel = fuelSTTO + fuelClimb + fuelEnroute + fuelDescend + fuelApproach + this.fuelRAH;

 //Recalculate gross weight
 gw = this.operatingWeight + rampFuel + payload;

158

 //Recalculate climb parameteres given new gross weight
 timeClimb = this.TimeToClimb(gw, alt, elev1);
 distClimb = this.DistToClimb(gw, alt, elev1, climbAWF, timeClimb);
 fuelClimb = this.FuelToClimb(gw, alt, elev1);
 gwAtDescent = gw - fuelSTTO - fuelClimb - fuelEnroute;
 timeDescend = this.TimeToDescend(gwAtDescent, alt, elev2);
 distDescend = this.DistToDescend(gwAtDescent, alt, elev2, descendAWF, timeDescend);
 fuelDescend = this.FuelToDescend(gwAtDescent, alt, elev2);
 distEnroute = distance - distClimb - distDescend;

 deltaRampFuel = rampFuel - tempRampFuel;
 tempRampFuel = rampFuel;
 }
 var mach = this.MachAirspeed(gw, alt, fuelEnroute);
 var tas = this.TrueAirspeed(alt, mach);
 var groundSpeed = tas + enrouteAWF;
 var timeEnroute = distEnroute / groundSpeed;

 var sortieParam = new sortieParameters(this.operatingWeight, fuelSTTO, timeClimb, distClimb,
 fuelClimb, gw, payload, alt, rampFuel, timeEnroute,
 distEnroute, fuelEnroute, mach, tas, timeDescend, distDescend,
 fuelDescend, this.timeApproach, fuelApproach);
 return sortieParam;
}

// determines if runway length is shorter than regulation minimums
aircraftMDS.prototype.RunwayLengthIsShorterThanRegMin = function (rwyLength) {
 if (rwyLength < this.minRwyLength)
 return true;
 else
 return false;
}

// determines if runway width is shorter than regulation minimums
aircraftMDS.prototype.RunwayWidthIsShorterThanRegMin = function (rwyWidth) {
 if (rwyWidth < this.minRwyWidth)
 return true;
 else
 return false;
}

// determines if airfield pavement can support takeoff
aircraftMDS.prototype.AirfieldPavementCanSupportTakeoff = function (maxPCNweight) {
 if (maxPCNweight > (this.operatingWeight + this.fuelRAH + this.fuelApproach + this.fuelSTTO))
 return true;
 else
 return false;
}

159

Sortie Parameters Object
Property Description

opWeight The empty weight of the aircraft without cargo or fuel.
fuelSTTO Fuel for start, taxi and takeoff.

timeToClimb Time to climb to cruise altitude for the sortie.
distToClimb Distance to climb to cruise altitude for the sortie.
fuelToClimb Fuel to climb to cruise altitude for the sortie.

gw The aircraft gross weight at takeoff for the sortie.
payload The payload for the sortie.

alt The altitude for the sortie.
rampFuel The ramp fuel for the sortie.

timeEnroute Time of cruise at altitude for the sortie.
distEnroute Distance of cruise at altitude for the sortie.
fuelEnroute Fuel of cruise at altitude for the sortie.

machEnroute Mach airspeed at cruise altitude for the sortie.
trueEnroute True airspeed at cruise altitude for the sortie.

timeToDescend Time to descend from cruise altitude for the sortie.
distToDescend Distance to descend from cruise altitude for the sortie.
fuelToDescend Fuel to descend from cruise altitude for the sortie.
timeApproach Time for the approach and landing.
fuelApproach Fuel for the approach and landing.

/* Creates sortie parameters object to hold all sortie parameters */
function sortieParameters(opWeight, fuelSTTO, timeToClimb, distToClimb, fuelToClimb, gw, payload, alt,
 rampFuel, timeEnroute, distEnroute, fuelEnroute, machEnroute,
 trueEnroute, timeToDescend, distToDescend, fuelToDescend, timeApproach, fuelApproach) {
 this.opWeight = opWeight;
 this.fuelSTTO = fuelSTTO;
 this.timeToClimb = timeToClimb; this.distToClimb = distToClimb; this.fuelToClimb = fuelToClimb;
 this.gw = gw;
 this.payload = payload;
 this.alt = alt;
 this.rampFuel = rampFuel;
 this.timeEnroute = timeEnroute; this.distEnroute = distEnroute; this.fuelEnroute = fuelEnroute;
 this.machEnroute = machEnroute; this.trueEnroute = trueEnroute;
 this.timeToDescend = timeToDescend; this.distToDescend = distToDescend;
 this.fuelToDescend = fuelToDescend;
 this.timeApproach = timeApproach;
 this.fuelApproach = fuelApproach;
}

160

Sortie Parameters Functions
Name Inputs Description
TotalDist () Returns total distance in NMs by summing climb, enroute & descent distances.
TotalTime () Returns total time in hours by summing climb, enroute and descent times.
TotalFuel () Returns total fuel in Klbs by summing climb, enroute and descent fuels.

// Determines sum of distances for climb, enroute and descent.
sortieParameters.prototype.TotalDist = function () {
 var totalDist = 0.0;
 totalDist = this.distToClimb + this.distEnroute + this.distToDescend;
 return totalDist;
}

// Determines sum of time for climb, enroute, descent and approach.
sortieParameters.prototype.TotalTime = function () {
 var totalTime = 0.0;
 totalTime = this.timeToClimb / 60 + this.timeEnroute + this.timeToDescend / 60 +
 this.timeApproach / 60;
 return totalTime;
}

// Determines sum of fuel for start, taxi, takeoff, climb, enroute, descent, approach and landing.
sortieParameters.prototype.TotalFuel = function () {
 var totalFuel = 0.0;
 totalFuel = this.fuelSTTO + this.fuelToClimb + this.fuelEnroute + this.fuelToDescend +
 this.fuelApproach;
 return totalFuel;
}

161

Appendix C: Airfield, Distance, Pavement and Airspace Algorithms

airfield Object
Property Description

name Name of the airfield.
state_prov Number that represents the state where the airfield is located.

icao Four letter ICAO designation.
wgs_dlat Latitude in decimal degrees.

wgs_dlong Longitude in decimal degrees.
elev Elevation in feet.
type Type of airfield (A - Civil, B - Civil and Military, C - Military, D - Inactive).

magvar Magnetic variation of airfield location.
opr_agy Operating agency.
runways Array of runway objects.

// Airfield object
function airfield(name, state_prov, icao, wgs_dlat, wgs_dlong, elev, type, magvar, opr_agy, runways) {
 this.name = name;
 this.state_prov = state_prov;
 this.icao = icao;
 this.wgs_dlat = wgs_dlat;
 this.wgs_dlong = wgs_dlong;
 this.elev = elev;
 this.type = type;
 this.magvar = magvar;
 this.opr_agy = opr_agy;
 this.runways = runways;
}

runway Object
Property Description

highIdent The high end of the runway.
lowIdent The low end of the runway

rwyLength Runway length in feet.
width Runway width in feet.
pcn Runway Pavement Classification Number Code.

// Runway object
function runway(highIdent, lowIdent, rwyLength, width, pcn) {
 this.highIdent = highIdent;
 this.lowIdent = lowIdent;
 this.rwyLength = rwyLength;
 this.width = width;
 this.pcn = pcn;
}

162

GeodeticCurve Object
Property Description

distance The distance between lat-long pairs in meters.
azimuth The azimuth from the origin to the destination.

reverseAzimuth The reverse azimuth from the destination to the origin.
fromLat The origin latitude in decimal degrees.

fromLong The origin longitude in decimal degrees.
toLat The destination latitude in decimal degrees.

toLong The destination longitude in decimal degrees.
minLat The minimum latitude on curve between origin and dest.
maxLat The maximum latitude on curve between origin and dest.

// Creates geodetic curve object that represents a great circle segment
function GeodeticCurve(distance, azimuth, reverseAzimuth, fromLat, fromLong, toLat, toLong, minLat,
maxLat) {
 this.distance = distance;
 this.azimuth = azimuth;
 this.reverseAzimuth = reverseAzimuth;
 this.fromLat = fromLat;
 this.fromLong = fromLong;
 this.toLat = toLat;
 this.toLong = toLong;
 this.minLat = minLat;
 this.maxLat = maxLat;
}

waypoint Object
Property Description

lat The latitude in decimal degrees.
long The longitude in decimal degrees.

// waypoint object
function waypoint(lat, long) {
 this.lat = lat;
 this.long = long;
}

longitudePair Object
Property Description

long1 The first longitude in decimal degrees.
long2 The second longitude in decimal degrees.

// longitude pair object for calcLongGivenLat below
function LongitudePair(long1, long2) {
 this.long1 = long1;
 this.long2 = long2;
}

163

restrictedPolygon Object
Property Description
waypoints Array of waypoint objects representing polygon boundary.
geoCurves Array of geodeticCurve objects representing polygon arcs.

maxLat The maximum latitude of all geocurves.
minLat The minimum latitude of all geocurves.

maxLong The maximum longitude of all waypoints.
minLong The minimum longitude of all waypoints.

potentialImpact Boolean to identify potential intersection of sortie with restricted polygon.

// creates a restrictedPolygon object from an array of waypoint objects
function restrictedPolygon(waypoints) {
 if (waypoints) {
 this.waypoints = waypoints; //waypoints is an array of waypoint objects
 this.geoCurves = new Array();
 var geoCurve;
 this.maxLat = waypoints[0].lat;
 this.minLat = waypoints[0].lat;
 this.maxLong = waypoints[0].long;
 this.minLong = waypoints[0].long;
 if (waypoints.length > 1) {
 for (var i = 0; i < waypoints.length; i++) {
 if (i == waypoints.length - 1) {
 geoCurve = new VincentyDistance(waypoints[i].lat, waypoints[i].long, waypoints[0].lat,
 waypoints[0].long);
 geoCurve.LatMaxMin();
 }
 else {
 geoCurve = new VincentyDistance(waypoints[i].lat, waypoints[i].long, waypoints[i +
 1].lat, waypoints[i + 1].long);
 geoCurve.LatMaxMin();
 }
 this.geoCurves.push(geoCurve);
 if (geoCurve.maxLat > this.maxLat)
 this.maxLat = geoCurve.maxLat;
 if (geoCurve.minLat < this.minLat)
 this.minLat = geoCurve.minLat;
 if (waypoints[i].long > this.maxLong)
 this.maxLong = waypoints[i].long;
 if (waypoints[i].long < this.minLong)
 this.minLong = waypoints[i].long;
 }
 }
 this.potentialImpact = false;
 }
 else {
 this.waypoints = waypoints; //waypoints is an array of waypoint objects
 this.geoCurves = null;
 this.maxLat = null;
 this.minLat = null;
 this.maxLong = null;
 this.minLong = null;
 this.potentialImpact = false;
 }
}

164

flightSegment Object
Property Description

fromLat The origin latitude in decimal degrees on flight segment.
fromLong The origin longitude in decimal degrees on flight segment.

toLat The destination latitude in decimal degrees on flight segment.
toLong The destination longitude in decimal degrees on flight segment.

dist The distance in NMs of flight segment.

// flightSegment object representing portion of a sortie
function flightSegment(fromLat, fromLong, toLat, toLong, dist) {
 this.fromLat = fromLat;
 this.fromLong = fromLong;
 this.toLat = toLat;
 this.toLong = toLong;
 this.dist = dist;
}

flightPath Object
Property Description
fltSegments Array of flightSegment objects.

totalDist Total distance of ll flight segments in NMs.

// flightPath object representing all fltSegments of a sortie
function flightPath(fltSegments, totalDist) {
 this.fltSegments = fltSegments;
 this.totalDist = totalDist;
}

165

Assorted Functions
Name Inputs Description

Vincenty Distance (fromLat, fromLong, toLat,
toLong)

Returns the Vincenty elliptical earth distance in
meters between two lat-long pairs in decimal

degrees.
DetermineLatLong

Bounds
(fromLat, fromLong, toLat,

toLong)
Returns google maps LatLngBounds object for

setting map window size.

CalculateGreatCircle
Midpoint

(fromLat, fromLong, toLat,
toLong)

Returns text lat-long of midpoint for centering
on Great Circle Mapper web site.

PCN to
MaxGrossWeight (selectMDS, PCN)

Returns aircraft maximum gross takeoff weight
in Klbs given an aircraftMDS object and the

airfield Pavement Classification Number
(PCN)

Determine Average
Temperature (latitude, elevation)

Returns the average monthly temperature in
degrees Celsius using the current month, a
given latitude in decimal degrees and an

elevation in feet.

HeadWind (rwyHdg, windDirection,
windSpeed) Returns the headwind component in knots.

CrossWind (rwyHdg, windDirection,
windSpeed) Returns the crosswind component in knots.

SelectShortestFlightPath (fltPaths)
Returns the flightPath object with the minimum
totalDist property from an Array of flightPath

objects.

// Calculates the vincenty elliptical great circle geodetic curve (www.gavaghan.org)
function VincentyDistance(lat1, long1, lat2, long2) {

 //Ellipsoid properties based on WGS-84
 var semiMajor = 6378137.0; //Meters
 var inverseFlattening = 298.257223563;
 var flattening = 1.0 / inverseFlattening;
 var semiMinor = (1.0 - flattening) * semiMajor;

 // simplify
 var a = semiMajor;
 var b = semiMinor;
 var f = flattening;
 var TwoPi = 2.0 * Math.PI;

 // get parameters as radians
 var phi1 = lat1 * Math.PI / 180.0;
 var lambda1 = long1 * Math.PI / 180.0;
 var phi2 = lat2 * Math.PI / 180.0;
 var lambda2 = long2 * Math.PI / 180.0;

 // calculations
 var a2 = a * a;
 var b2 = b * b;
 var a2b2b2 = (a2 - b2) / b2;

 var omega = lambda2 - lambda1;

http://www.gavaghan.org/

166

 var tanphi1 = Math.tan(phi1);
 var tanU1 = (1.0 - f) * tanphi1;
 var U1 = Math.atan(tanU1);
 var sinU1 = Math.sin(U1);
 var cosU1 = Math.cos(U1);

 var tanphi2 = Math.tan(phi2);
 var tanU2 = (1.0 - f) * tanphi2;
 var U2 = Math.atan(tanU2);
 var sinU2 = Math.sin(U2);
 var cosU2 = Math.cos(U2);

 var sinU1sinU2 = sinU1 * sinU2;
 var cosU1sinU2 = cosU1 * sinU2;
 var sinU1cosU2 = sinU1 * cosU2;
 var cosU1cosU2 = cosU1 * cosU2;

 // eq. 13
 var lambda = omega;

 // intermediates we'll need to compute 's'
 var A = 0.0;
 var B = 0.0;
 var sigma = 0.0;
 var deltasigma = 0.0;
 var lambda0;
 var converged = false;

 for (var i = 0; i < 20; i++) {
 lambda0 = lambda;

 var sinlambda = Math.sin(lambda);
 var coslambda = Math.cos(lambda);

 // eq. 14
 var sin2sigma = (cosU2 * sinlambda * cosU2 * sinlambda) + Math.pow(cosU1sinU2 - sinU1cosU2 *
 coslambda, 2.0);
 var sinsigma = Math.sqrt(sin2sigma);

 // eq. 15
 var cossigma = sinU1sinU2 + (cosU1cosU2 * coslambda);

 // eq. 16
 sigma = Math.atan2(sinsigma, cossigma);

 // eq. 17 Careful! sin2sigma might be almost 0!
 var sinalpha = (sin2sigma == 0) ? 0.0 : cosU1cosU2 * sinlambda / sinsigma;
 var alpha = Math.asin(sinalpha);
 var cosalpha = Math.cos(alpha);
 var cos2alpha = cosalpha * cosalpha;

 // eq. 18 Careful! cos2alpha might be almost 0!
 var cos2sigmam = cos2alpha == 0.0 ? 0.0 : cossigma - 2 * sinU1sinU2 / cos2alpha;
 var u2 = cos2alpha * a2b2b2;

 var cos2sigmam2 = cos2sigmam * cos2sigmam;

 // eq. 3
 A = 1.0 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)));

 // eq. 4
 B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)));

 // eq. 6
 deltasigma = B * sinsigma * (cos2sigmam + B / 4 * (cossigma * (-1 + 2 * cos2sigmam2) - B / 6 *
 cos2sigmam * (-3 + 4 * sin2sigma) * (-3 + 4 * cos2sigmam2)));

 // eq. 10
 var C = f / 16 * cos2alpha * (4 + f * (4 - 3 * cos2alpha));

167

 // eq. 11 (modified)
 lambda = omega + (1 - C) * f * sinalpha * (sigma + C * sinsigma * (cos2sigmam + C * cossigma * (-1
 + 2 * cos2sigmam2)));

 // see how much improvement we got
 var change = Math.abs((lambda - lambda0) / lambda);

 if ((i > 1) && (change < 0.0000000000001)) {
 converged = true;
 break;
 }
 }

 // eq. 19
 var s = b * A * (sigma - deltasigma);
 var alpha1;
 var alpha2;

 // didn't converge? must be N/S
 if (!converged) {
 if (phi1 > phi2) {
 alpha1 = 180.0;
 alpha2 = 0.0;
 }
 else (phi1 < phi2)
 {
 alpha1 = 0.0;
 alpha2 = 180.0;
 }
 }
 // else, it converged, so do the math
 else {
 var radians;
 // eq. 20
 radians = Math.atan2(cosU2 * Math.sin(lambda), (cosU1sinU2 - sinU1cosU2 * Math.cos(lambda)));
 if (radians < 0.0) radians += TwoPi;
 alpha1 = radians * 180.0 / Math.PI;

 // eq. 21
 radians = Math.atan2(cosU1 * Math.sin(lambda), (-sinU1cosU2 + cosU1sinU2 * Math.cos(lambda))) +

 Math.PI;
 if (radians < 0.0) radians += TwoPi;
 alpha2 = radians * 180.0 / Math.PI;
 }

 if (alpha1 >= 360.0) alpha1 -= 360.0;
 if (alpha2 >= 360.0) alpha2 -= 360.0;

 return new GeodeticCurve(s, alpha1, alpha2, lat1, long1, lat2, long2, 0, 0);

}

// Determines the lat and long bounds for google maps
function DetermineLatLongBounds(maxLat, fromLong, minLat, toLong) {
 var left = 0.0;
 var right = 0.0;
 if (fromLong < toLong) {
 left = fromLong;
 right = toLong;
 }
 else {
 left = toLong;
 right = fromLong;
 }

 return new google.maps.LatLngBounds(new google.maps.LatLng(minLat, left), new

 google.maps.LatLng(maxLat, right));
}

168

// Calculates the lat long for the midpint of a route
function calculateGreatCircleMidpoint(fromLat, fromLong, toLat, toLong) {

 var dLat = (toLat - fromLat) * Math.PI / 180;
 var dLon = (toLong - fromLong) * Math.PI / 180;
 var lat1 = fromLat * Math.PI / 180;
 var lat2 = toLat * Math.PI / 180;
 var lon1 = fromLong * Math.PI / 180;

 var Bx = Math.cos(lat2) * Math.cos(dLon);
 var By = Math.cos(lat2) * Math.sin(dLon);
 var lat3 = Math.atan2(Math.sin(lat1) + Math.sin(lat2),
 Math.sqrt((Math.cos(lat1) + Bx) * (Math.cos(lat1) + Bx) + By * By));
 var lon3 = lon1 + Math.atan2(By, Math.cos(lat1) + Bx);

 lat3 *= 180 / Math.PI;
 lon3 *= 180 / Math.PI;

 var ns, ew;

 if (lat3 >= 0)
 ns = "N";
 else
 ns = "S";

 if (lon3 >= 0)
 ew = "E";
 else
 ew = "W";

 var latLong = ns + Math.abs(lat3).toFixed(0) + ew + Math.abs(lon3).toFixed(0);

 return latLong;
}

//Determine the maximum gross takeoff weight for a given pavement and aircraft type
function PCNtoMaxGrossWeight(selectMDS, PCN)
{
 var numPCN = PCN.substring(0,3);
 var pavement = PCN.substring(3,5);
 var maxGrossTakeoffWeight = null;

 //C-5 pavement Regression Coefficients
 var c5_maxGrossTakeoffWeight = 769.0;
 var c5_FA_Beta0 = 201.41;
 var c5_FA_Beta1 = 17.26;
 var c5_FB_Beta0 = 172.07;
 var c5_FB_Beta1 = 15.53;
 var c5_FC_Beta0 = 159.89;
 var c5_FC_Beta1 = 12.59;
 var c5_FD_Beta0 = 174.29;
 var c5_FD_Beta1 = 8.32;
 var c5_RA_Beta0 = 196.48;
 var c5_RA_Beta1 = 22.19;
 var c5_RB_Beta0 = 15.54;
 var c5_RB_Beta1 = 35.85;
 var c5_RC_Beta0 = 190.93;
 var c5_RC_Beta1 = 16.64;
 var c5_RD_Beta0 = 182.12;
 var c5_RD_Beta1 = 13.71;

 //C-17 pavement Regression Coefficients
 var c17_maxGrossTakeoffWeight = 585.0;
 var c17_FA_Beta0 = 121.5882353;
 var c17_FA_Beta1 = 8.911764706;
 var c17_FB_Beta0 = 126.6153846;
 var c17_FB_Beta1 = 7.769230769;
 var c17_FC_Beta0 = 145.9591837;

169

 var c17_FC_Beta1 = 6.183673469;
 var c17_FD_Beta0 = 153.4545455;
 var c17_FD_Beta1 = 4.590909091;
 var c17_RA_Beta0 = 59.80;
 var c17_RA_Beta1 = 10.10;
 var c17_RB_Beta0 = 59.80;
 var c17_RB_Beta1 = 10.10;
 var c17_RC_Beta0 = 59.80;
 var c17_RC_Beta1 = 10.10;
 var c17_RD_Beta0 = 123.9130435;
 var c17_RD_Beta1 = 6.586956522;

 //C-130 pavement Regression Coefficients
 var c130_maxGrossTakeoffWeight = 153.7;
 var c130_FA_Beta0 = 62.50;
 var c130_FA_Beta1 = 3.75;
 var c130_FB_Beta0 = 57.31;
 var c130_FB_Beta1 = 3.46;
 var c130_FC_Beta0 = 46.92;
 var c130_FC_Beta1 = 3.46;
 var c130_FD_Beta0 = 41.55;
 var c130_FD_Beta1 = 3.10;
 var c130_RA_Beta0 = 57.31;
 var c130_RA_Beta1 = 3.46;
 var c130_RB_Beta0 = 56.07;
 var c130_RB_Beta1 = 3.21;
 var c130_RC_Beta0 = 52.00;
 var c130_RC_Beta1 = 3.00;
 var c130_RD_Beta0 = 50.16;
 var c130_RD_Beta1 = 2.90;

 switch (selectMDS) {
 case C5:
 switch (pavement) {
 case "FA":
 maxGrossTakeoffWeight = c5_FA_Beta0 + c5_FA_Beta1 * numPCN;
 break;
 case "FB":
 maxGrossTakeoffWeight = c5_FB_Beta0 + c5_FB_Beta1 * numPCN;
 break;
 case "FC":
 maxGrossTakeoffWeight = c5_FC_Beta0 + c5_FC_Beta1 * numPCN;
 break;
 case "FD":
 maxGrossTakeoffWeight = c5_FD_Beta0 + c5_FD_Beta1 * numPCN;
 break;
 case "RA":
 maxGrossTakeoffWeight = c5_RA_Beta0 + c5_RA_Beta1 * numPCN;
 break;
 case "RB":
 maxGrossTakeoffWeight = c5_RB_Beta0 + c5_RB_Beta1 * numPCN;
 break;
 case "RC":
 maxGrossTakeoffWeight = c5_RC_Beta0 + c5_RC_Beta1 * numPCN;
 break;
 case "RD":
 maxGrossTakeoffWeight = c5_RD_Beta0 + c5_RD_Beta1 * numPCN;
 break;
 default:
 maxGrossTakeoffWeight = c5_maxGrossTakeoffWeight;
 break;
 }
 break;
 case C17:
 switch (pavement) {
 case "FA":
 maxGrossTakeoffWeight = c17_FA_Beta0 + c17_FA_Beta1 * numPCN;
 break;

170

 case "FB":
 maxGrossTakeoffWeight = c17_FB_Beta0 + c17_FB_Beta1 * numPCN;
 break;
 case "FC":
 maxGrossTakeoffWeight = c17_FC_Beta0 + c17_FC_Beta1 * numPCN;
 break;
 case "FD":
 maxGrossTakeoffWeight = c17_FD_Beta0 + c17_FD_Beta1 * numPCN;
 break;
 case "RA":
 maxGrossTakeoffWeight = c17_RA_Beta0 + c17_RA_Beta1 * numPCN;
 break;
 case "RB":
 maxGrossTakeoffWeight = c17_RB_Beta0 + c17_RB_Beta1 * numPCN;
 break;
 case "RC":
 maxGrossTakeoffWeight = c17_RC_Beta0 + c17_RC_Beta1 * numPCN;
 break;
 case "RD":
 maxGrossTakeoffWeight = c17_RD_Beta0 + c17_RD_Beta1 * numPCN;
 break;
 default:
 maxGrossTakeoffWeight = c17_maxGrossTakeoffWeight;
 break;
 }
 break;
 case C130:
 switch (pavement) {
 case "FA":
 maxGrossTakeoffWeight = c130_FA_Beta0 + c130_FA_Beta1 * numPCN;
 break;
 case "FB":
 maxGrossTakeoffWeight = c130_FB_Beta0 + c130_FB_Beta1 * numPCN;
 break;
 case "FC":
 maxGrossTakeoffWeight = c130_FC_Beta0 + c130_FC_Beta1 * numPCN;
 break;
 case "FD":
 maxGrossTakeoffWeight = c130_FD_Beta0 + c130_FD_Beta1 * numPCN;
 break;
 case "RA":
 maxGrossTakeoffWeight = c130_RA_Beta0 + c130_RA_Beta1 * numPCN;
 break;
 case "RB":
 maxGrossTakeoffWeight = c130_RB_Beta0 + c130_RB_Beta1 * numPCN;
 break;
 case "RC":
 maxGrossTakeoffWeight = c130_RC_Beta0 + c130_RC_Beta1 * numPCN;
 break;
 case "RD":
 maxGrossTakeoffWeight = c130_RD_Beta0 + c130_RD_Beta1 * numPCN;
 break;
 default:
 maxGrossTakeoffWeight = c130_maxGrossTakeoffWeight;
 break;
 }
 break;
 default:
 switch (pavement) {
 case "FA":
 maxGrossTakeoffWeight = c17_FA_Beta0 + c17_FA_Beta1 * numPCN;
 break;
 case "FB":
 maxGrossTakeoffWeight = c17_FB_Beta0 + c17_FB_Beta1 * numPCN;
 break;
 case "FC":
 maxGrossTakeoffWeight = c17_FC_Beta0 + c17_FC_Beta1 * numPCN;
 break;
 case "FD":

171

 maxGrossTakeoffWeight = c17_FD_Beta0 + c17_FD_Beta1 * numPCN;
 break;
 case "RA":
 maxGrossTakeoffWeight = c17_RA_Beta0 + c17_RA_Beta1 * numPCN;
 break;
 case "RB":
 maxGrossTakeoffWeight = c17_RB_Beta0 + c17_RB_Beta1 * numPCN;
 break;
 case "RC":
 maxGrossTakeoffWeight = c17_RC_Beta0 + c17_RC_Beta1 * numPCN;
 break;
 case "RD":
 maxGrossTakeoffWeight = c17_RD_Beta0 + c17_RD_Beta1 * numPCN;
 break;
 default:
 maxGrossTakeoffWeight = c17_maxGrossTakeoffWeight;
 break;
 }
 break;
 }
 return maxGrossTakeoffWeight;
}

// Determines the average temperature given a latitude in degrees and an elevation in feet.
function DetermineAverageTemperature(latitude, elevation) {
 var currentDate = new Date();
 var currentMonth = currentDate.getMonth();

 // Jan is 0 switches to Jan is 1
 var month = currentMonth + 1;
 var airfieldAveTemp = 0.0;

 //Temperature regression Coefficents
 var Jan_Beta0 = 23.16;
 var Jan_Beta1 = -0.2832;
 var Jan_Beta2 = -0.0084;
 var Jan_Beta3 = 26.06;

 var Feb_Beta0 = 24.78;
 var Feb_Beta1 = -0.2575;
 var Feb_Beta2 = -0.0092;
 var Feb_Beta3 = 30.32;

 var Mar_Beta0 = 26.80;
 var Mar_Beta1 = -0.1651;
 var Mar_Beta2 = -0.0099;
 var Mar_Beta3 = 28.21;

 var Apr_Beta0 = 27.67;
 var Apr_Beta1 = -0.0311;
 var Apr_Beta2 = -0.0097;
 var Apr_Beta3 = 20.00;

 var May_Beta0 = 27.06;
 var May_Beta1 = 0.0825;
 var May_Beta2 = -0.0088;
 var May_Beta3 = 15.77;

 var Jun_Beta0 = 26.33;
 var Jun_Beta1 = 0.1696;
 var Jun_Beta2 = -0.0080;
 var Jun_Beta3 = 12.45;

 var Jul_Beta0 = 26.17;
 var Jul_Beta1 = 0.1984;
 var Jul_Beta2 = -0.0077;
 var Jul_Beta3 = 12.91;

 var Aug_Beta0 = 26.80;

172

 var Aug_Beta1 = 0.1565;
 var Aug_Beta2 = -0.0080;
 var Aug_Beta3 = 18.38;

 var Sep_Beta0 = 27.26;
 var Sep_Beta1 = 0.0703;
 var Sep_Beta2 = -0.0085;
 var Sep_Beta3 = 22.54;

 var Oct_Beta0 = 26.89;
 var Oct_Beta1 = -0.0315;
 var Oct_Beta2 = -0.0089;
 var Oct_Beta3 = 21.87;

 var Nov_Beta0 = 24.95;
 var Nov_Beta1 = -0.1474;
 var Nov_Beta2 = -0.0086;
 var Nov_Beta3 = 20.51;

 var Dec_Beta0 = 23.21;
 var Dec_Beta1 = -0.2418;
 var Dec_Beta2 = -0.0082;
 var Dec_Beta3 = 22.29;

 var Yr_Beta0 = 25.92;
 var Yr_Beta1 = -0.0400;
 var Yr_Beta2 = -0.0087;
 var Yr_Beta3 = 20.94;

 //Elevation regression coefficients
 var elev_Beta1 = -1.9812;

 //Calculate the latitude determined average monthly or yearly temperature
 switch (month)
 {
 case "1":
 airfieldAveTemp = Jan_Beta0 + Jan_Beta1 * latitude + Jan_Beta2 * Math.pow(latitude, 2) +

 Jan_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "2":
 airfieldAveTemp = Feb_Beta0 + Feb_Beta1 * latitude + Feb_Beta2 * Math.pow(latitude, 2) +

 Feb_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "3":
 airfieldAveTemp = Mar_Beta0 + Mar_Beta1 * latitude + Mar_Beta2 * Math.pow(latitude, 2) +

 Mar_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "4":
 airfieldAveTemp = Apr_Beta0 + Apr_Beta1 * latitude + Apr_Beta2 * Math.pow(latitude, 2) +

 Apr_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "5":
 airfieldAveTemp = May_Beta0 + May_Beta1 * latitude + May_Beta2 * Math.pow(latitude, 2) +

 May_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "6":
 airfieldAveTemp = Jun_Beta0 + Jun_Beta1 * latitude + Jun_Beta2 * Math.pow(latitude, 2) +

 Jun_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "7":
 airfieldAveTemp = Jul_Beta0 + Jul_Beta1 * latitude + Jul_Beta2 * Math.pow(latitude, 2) +

 Jul_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "8":
 airfieldAveTemp = Aug_Beta0 + Aug_Beta1 * latitude + Aug_Beta2 * Math.pow(latitude, 2) +

 Aug_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "9":
 airfieldAveTemp = Sep_Beta0 + Sep_Beta1 * latitude + Sep_Beta2 * Math.pow(latitude, 2) +

173

 Sep_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "10":
 airfieldAveTemp = Oct_Beta0 + Oct_Beta1 * latitude + Oct_Beta2 * Math.pow(latitude, 2) +

 Oct_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "11":
 airfieldAveTemp = Nov_Beta0 + Nov_Beta1 * latitude + Nov_Beta2 * Math.pow(latitude, 2) +

 Nov_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 case "12":
 airfieldAveTemp = Dec_Beta0 + Dec_Beta1 * latitude + Dec_Beta2 * Math.pow(latitude, 2) +

 Dec_Beta3 * Math.pow(latitude, 3) / 1000000;
 break;
 default:
 airfieldAveTemp = Yr_Beta0 + Yr_Beta1 * latitude + Yr_Beta2 * Math.pow(latitude, 2) + Yr_Beta3
 * Math.pow(latitude, 3) / 1000000;
 break;
 }

 //adjust airfield temperature for elevation
 airfieldAveTemp = airfieldAveTemp + elevation * elev_Beta1 / 1000;

 return airfieldAveTemp.toFixed(2);
}

// Returns the headwind component in knots
function HeadWind(rwyHdg, windDirection, windSpeed) {

 if (typeof windDirection === "undefined") {
 headwnd = - windSpeed / 1.0;
 }
 else {
 var windAngle = windDirection - rwyHdg;

 if (windAngle > 180)
 windAngle = -360 + windAngle;
 if (windAngle <= -180)
 windAngle = 360 + windAngle;
 if ((windAngle >= -90 && windAngle < 0) || (windAngle > 90 && windAngle <= 180))
 windAngle = -windAngle;
 var headwnd = windSpeed * Math.cos(windAngle * Math.PI / 180.0)
 }

 return headwnd;
}

// Returns the crosswing component in knots
function CrossWind(rwyHdg, windDirection, windSpeed) {
 if (typeof windDirection === "undefined") {
 crosswnd = windSpeed / 1.0;
 }
 else {
 var windAngle = windDirection - rwyHdg;

 if (windAngle > 180)
 windAngle = -360 + windAngle;
 if (windAngle <= -180)
 windAngle = 360 + windAngle;
 var crosswnd = windSpeed * Math.sin(windAngle * Math.PI / 180.0)
 }

 return crosswnd;
}

174

// returns flightPath object that represents the shortest flight path from an array of flight paths
function SelectShortestFlightPath(fltPaths) {
 var shortestFltPath = new flightPath();

 shortestFltPath = fltPaths[0];
 for (var i = 1; i < fltPaths.length; i++) {
 if (fltPaths[i].totalDist < shortestFltPath.totalDist)
 shortestFltPath = fltPaths[i];
 }

 return shortestFltPath;
}

restrictedPolygon Functions
Name Inputs Description

DoesCurveIntersect (geoCurveSortie) Returns boolean true if geodeticCurve object intersects
restrictedPolygon object.

CalculateIntersections (geoCurve,
crossID)

Returns Array of waypoints representing the intersections of the
sortie and the restrictedPolygon object's geocurves. CrossID is
boolean representing if sortie crosses the International Dateline.

AddWaypoint (wpt) Adds waypoint to restrictedPolygon object.
CenterWpt () Returns waypoint object representing center of polygon.

//determines if curve intersects restricted airspace
restrictedPolygon.prototype.DoesCurveIntersect = function (geoCurveSortie) {
 var crossID = false;
 var potIntersectCoords;
 var intersections;
 var wpts;

 // determine min and max latitudes for great circle path
 geoCurveSortie.LatMaxMin();

 //determine if longitude pair results in cross of 180E/W
 var deltaLong = Math.abs(geoCurveSortie.toLong - geoCurveSortie.fromLong);
 if (deltaLong > 180)
 crossID = true;

 // Determine if polygon potentially impacts sortie flight path
 // Is this restricted airspace block a potential factor for the sortie
 // if min lat of restricted airspace is < max lat of great circle or max lat of restricted airspace is
 // > min lat of great circle
 if (this.minLat < geoCurveSortie.maxLat || this.maxLat > geoCurveSortie.minLat) {
 //restricted airspace might potentially interfere due to vertical
 if (crossID) {
 if (this.minLong < Math.min(geoCurveSortie.fromLong, geoCurveSortie.toLong) ||
 this.maxLong > Math.max(geoCurveSortie.fromLong, geoCurveSortie.toLong)) {
 this.potentialImpact = true;
 }
 else {
 this.potentialImpact = false;
 }
 }
 else {
 if ((this.maxLong > Math.min(geoCurveSortie.fromLong, geoCurveSortie.toLong) &&
 this.maxLong < Math.max(geoCurveSortie.fromLong, geoCurveSortie.toLong)) ||
 (this.minLong > Math.min(geoCurveSortie.fromLong, geoCurveSortie.toLong) &&
 this.minLong < Math.max(geoCurveSortie.fromLong, geoCurveSortie.toLong))) {
 this.potentialImpact = true;

175

 }
 else {
 this.potentialImpact = false;
 }
 }
 }

 // Determine if restricted polygon actually impacts flight path
 if (this.potentialImpact) {
 // calculate intersections
 this.calculateIntersections(geoCurveSortie, crossID);

 // if number of intersections is greater than zero calculate set of alternative flight paths
 if (this.intersections.length > 0) {
 return true;
 }
 else
 return false;
 }
 else {
 return false;
 }
}

// Returns intersections array of waypoint objects that represent intersections
restrictedPolygon.prototype.CalculateIntersections = function (geoCurve, crossID) {
 var intersection;
 var intersections = new Array();
 for (var i = 0; i < this.geoCurves.length; i++) {
 intersection = this.geoCurves[i].calculateIntersection(geoCurve);
 if (intersection.lat < this.geoCurves[i].maxLat && intersection.lat > this.geoCurves[i].minLat &&
 intersection.lat < geoCurve.maxLat && intersection.lat > geoCurve.minLat) {
 if (crossID) {
 if (intersection.long < Math.max(this.geoCurves[i].fromLong, this.geoCurves[i].toLong) &&
 intersection.long > Math.min(this.geoCurves[i].fromLong, this.geoCurves[i].toLong) &&
 (intersection.long > Math.max(geoCurve.fromLong, geoCurve.toLong) ||
 intersection.long < Math.min(geoCurve.fromLong, geoCurve.toLong))) {
 intersections.push(intersection);
 }
 }
 else {
 if (intersection.long < Math.max(this.geoCurves[i].fromLong, this.geoCurves[i].toLong) &&
 intersection.long > Math.min(this.geoCurves[i].fromLong, this.geoCurves[i].toLong) &&
 intersection.long < Math.max(geoCurve.fromLong, geoCurve.toLong) &&
 intersection.long > Math.min(geoCurve.fromLong, geoCurve.toLong)) {
 intersections.push(intersection);
 }
 }
 }
 }
 this.intersections = intersections;
}

// adds a waypoint object to waypoints array property of restrictedPolygon object
restrictedPolygon.prototype.AddWaypoint = function (wpt) {
 this.waypoints.push(wpt)
 this.geoCurves = new Array();
 var geoCurve;
 this.maxLat = this.waypoints[0].lat;
 this.minLat = this.waypoints[0].lat;
 this.maxLong = this.waypoints[0].long;
 this.minLong = this.waypoints[0].long;
 if (this.waypoints.length > 1) {
 for (var i = 0; i < this.waypoints.length; i++) {
 if (i == this.waypoints.length - 1) {
 geoCurve = new VincentyDistance(this.waypoints[i].lat, this.waypoints[i].long,
 this.waypoints[0].lat, this.waypoints[0].long);
 geoCurve.LatMaxMin();

176

 }
 else {
 geoCurve = new VincentyDistance(this.waypoints[i].lat, this.waypoints[i].long,
 this.waypoints[i + 1].lat, this.waypoints[i + 1].long);
 geoCurve.LatMaxMin();
 }
 this.geoCurves.push(geoCurve);
 if (geoCurve.maxLat > this.maxLat)
 this.maxLat = geoCurve.maxLat;
 if (geoCurve.minLat < this.minLat)
 this.minLat = geoCurve.minLat;
 if (this.waypoints[i].long > this.maxLong)
 this.maxLong = this.waypoints[i].long;
 if (this.waypoints[i].long < this.minLong)
 this.minLong = this.waypoints[i].long;
 }
 }
 this.potentialImpact = false;
}

// returns the center waypoint between min and max lat and min and max long of restrictedPolygon object
restrictedPolygon.prototype.CenterWpt = function () {
 var lat = (this.maxLat + this.minLat) / 2;
 var long = (this.maxLong + this.minLong) / 2;
 var wpt = new waypoint(lat, long);

 return wpt;
}

waypoint Functions
Name Inputs Description

GcMapWpt () Returns the textual format of a lat-long pair for visualization on
Great Circle Mapper website.

// returns the textual format for a lat-long pair for display on the great circle mapper web site
waypoint.prototype.GcMapWpt = function () {
 var GCmapWpt = "";
 var waypointNS = "";
 var waypointEW = "";

 if (this.lat >= 0)
 waypointNS = "N";
 else
 waypointNS = "S";

 if (this.long >= 0)
 waypointEW = "E";
 else
 waypointEW = "W";

 GCmapWpt = this.lat.toFixed(0) + waypointNS + this.long.toFixed(0) + waypointEW;
 return GCmapWpt;
}

177

GeodeticCurve Functions
Name Inputs Description

LatMaxMin () Returns the maximum and minimum latitude over the geodetic
curve from origin to destination.

CalcLatGivenLong (lon) Returns the latitude given a longitude for the geodetic curve.
CalcLongGivenLat (lat) Returns the LongitudePair given a latitude for the geodetic curve.

 CalculateIntersection (geocurve) Returns the waypoint object of the intersection of the two
geocurves.

DetermineOptimalPath
AroundRest (restPoly) Returns the flightPath object that optimally goes around the

airspace of a restrictedPolygon object.

BuildAltFlightPaths (restPoly) Returns an array of possible flightPath objects that go around the
airspace of a restrictedPolygon object.

// Calculates the maximum and minimum latitude given a geodetic curve
GeodeticCurve.prototype.LatMaxMin = function() {
 var az = this.azimuth;
 var revaz = this.reverseAzimuth;
 var latMxMn = 180.0 * Math.acos(Math.abs(Math.sin(az * Math.PI / 180.0) * Math.cos(this.fromLat *

 Math.PI / 180.0))) / Math.PI;
 if ((az >= 0 && az < 90 && revaz >= 180 && revaz < 270) ||
 (az >= 90 && az < 180 && revaz >= 270 && revaz < 360) ||
 (az >= 180 && az < 270 && revaz >= 0 && revaz < 90) ||
 (az >= 270 && az < 360 && revaz >= 90 && revaz < 180))
 {
 if (this.fromLat > this.toLat) {
 this.maxLat = this.fromLat;
 this.minLat = this.toLat;
 }
 else {
 this.maxLat = this.toLat;
 this.minLat = this.fromLat;
 }
 }
 else
 {
 if (az > 90 && az < 270 && revaz > 90 && revaz < 270) {
 this.minLat = -latMxMn;
 if (this.fromLat > this.toLat) {
 this.maxLat = this.fromLat;
 }
 else {
 this.maxLat = this.toLat;
 }
 }
 else {
 this.maxLat = latMxMn;
 if (this.fromLat > this.toLat) {
 this.minLat = this.toLat;
 }
 else {
 this.minLat = this.fromLat;
 }
 }
 }
}

// Returns the latitude given a geodetic curve and a longitude
GeodeticCurve.prototype.CalcLatGivenLong = function (lon) {
 var alpha0; // the bearing angle at the equator for the great circle in radians

178

 var lambda0; // the longitude where the great circle crosses the equator in radians
 var phi1; // the latitude of the selected origin on the geocurve in radians
 var lambda1; // the longitude for the selected origin on the geocurve in radians
 var alpha1; // the bearing for the latitude selected in radians
 var sigma01; // the angle from great circle point on equator to origin
 var sigma02; // the angle from great circle point on equator to selected point
 var lambda2; // the longitude that determines the latitude
 var phi2; // the latitude that is being calculated
 var lat; // the latitude in degrees

 alpha1 = this.azimuth * Math.PI / 180.0; // bearing of origin airfield
 phi1 = this.fromLat * Math.PI / 180.0; // latitude of origin airfield
 lambda1 = this.fromLong * Math.PI / 180.0; // longitude of origin airfield
 lambda2 = lon * Math.PI / 180.0; // longitude of input point
 // determine bearin angle at the equator
 alpha0 = Math.atan2(Math.sin(alpha1) * Math.cos(phi1), Math.sqrt(Math.pow(Math.cos(alpha1), 2) +

 Math.pow(Math.sin(alpha1), 2) * Math.pow(Math.sin(phi1), 2)));

 // determine angle from great circle point on equator to origin airfield
 sigma01 = Math.atan2(Math.tan(phi1), Math.cos(alpha1));

 // determine the longitude at the equator
 lambda0 = lambda1 - Math.atan2(Math.sin(alpha0) * Math.sin(sigma01), Math.cos(sigma01));

 // determine angle from great circle point on equator to selected point at input longitude
 var deltaLambda = lambda2 - lambda0;
 if (alpha0 > 0) {
 if ((deltaLambda > Math.PI / 2 && deltaLambda < 3 * Math.PI / 2) || (deltaLambda < -Math.PI / 2 &&

 deltaLambda > -3 * Math.PI / 2)) {
 sigma02 = -Math.atan2(Math.tan(deltaLambda), Math.sin(alpha0));
 }
 else {
 sigma02 = Math.atan2(Math.tan(deltaLambda), Math.sin(alpha0));
 }

 }
 else {
 if ((deltaLambda < Math.PI / 2 && deltaLambda > -Math.PI / 2) || (deltaLambda > 3 * Math.PI / 2)
 || (deltaLambda < -3 * Math.PI / 2)) {
 sigma02 = -Math.atan2(Math.tan(deltaLambda), Math.sin(alpha0));
 }
 else {
 sigma02 = Math.atan2(Math.tan(deltaLambda), Math.sin(alpha0));
 }
 }

 // determine latitude of point
 phi2 = Math.asin(Math.cos(alpha0) * Math.sin(sigma02));
 lat = phi2 * 180.0 / Math.PI;
 debugTxt2 += "<tr><td>" + lon + "</td><td>" + lat + "</td><td>" + alpha0 * 180 / Math.PI + "</td><td>"

 + sigma02 * 180 / Math.PI + "</td><td>" +
 deltaLambda * 180 / Math.PI + "</td><td>" + Math.sin(alpha0) + "</td><td>" +

 Math.tan(deltaLambda) + "</td></tr>";
 return lat;
}

// Returns a longitude pair given a latitude
GeodeticCurve.prototype.CalcLongGivenLat = function (lat) {
 var alpha0; // the bearing angle at the equator for the great circle in radians
 var lambda0; // the longitude where the great circle crosses the equator in radians
 var phi1; // the latitude of the selected origin on the geocurve in radians
 var lambda1; // the longitude for the selected origin on the geocurve in radians
 var alpha1; // the bearing for the latitude selected in radians
 var sigma01; // the angle from great circle point on equator to origin
 var sigma02; // the angle from great circle point on equator to selected point
 var sigma03; // the angle from great circle point on equator to selected point
 var phi2; // the latitude that determines the longitude
 var lambda2; // the first longitude for selected latitude
 var lambda3; // the second longitude for selected latitude

179

 var longPair; // the longitude pair in degrees

 alpha1 = this.azimuth * Math.PI / 180.0; // bearing of origin airfield
 phi1 = this.fromLat * Math.PI / 180.0; // latitude of origin airfield
 lambda1 = this.fromLong * Math.PI / 180.0; // longitude of origin airfield
 phi2 = lat * Math.PI / 180.0; // latitude of input point

 // determine bearin angle at the equator
 alpha0 = Math.atan2(Math.sin(alpha1) * Math.cos(phi1), Math.sqrt(Math.pow(Math.cos(alpha1), 2) +

 Math.pow(Math.sin(alpha1), 2) * Math.pow(Math.sin(phi1), 2)));

 // determine angle from great circle point on equator to origin airfield
 sigma01 = Math.atan2(Math.tan(phi1), Math.cos(alpha1));

 // determine the longitude at the equator
 lambda0 = lambda1 - Math.atan2(Math.sin(alpha0) * Math.sin(sigma01), Math.cos(sigma01));

 // determine angle from great circle point on equator to selected point at input latitude
 sigma02 = Math.asin(Math.sin(phi2) / Math.cos(alpha0));

 // determine longitudes of points
 lambda2 = lambda0 + Math.atan2(Math.sin(alpha0) * Math.sin(sigma02), Math.cos(sigma02));
 lambda3 = lambda0 + Math.atan2(Math.sin(alpha0) * Math.sin(Math.PI - sigma02), Math.cos(Math.PI –

 sigma02));
 longPair = new LongitudePair(lambda2 * 180 / Math.PI, lambda3 * 180 / Math.PI);

 return longPair;
}

// Returns a possible intersection lat-long pair given two geocurves
GeodeticCurve.prototype.CalculateIntersection = function (geoCurve) {
 var intersection = new waypoint();

 lat1 = this.fromLat * Math.PI / 180;
 lon1 = this.fromLong * Math.PI / 180;
 lat2 = geoCurve.fromLat * Math.PI / 180;
 lon2 = geoCurve.fromLong * Math.PI / 180;

 brng13 = this.azimuth * Math.PI / 180;
 brng23 = geoCurve.azimuth * Math.PI / 180;
 dLat = lat2 - lat1;
 dLon = lon2 - lon1;

 dist12 = 2 * Math.asin(Math.sqrt(Math.sin(dLat / 2) * Math.sin(dLat / 2) +
 Math.cos(lat1) * Math.cos(lat2) * Math.sin(dLon / 2) * Math.sin(dLon / 2)));
 if (dist12 == 0) return null;

 // initial/final bearings between points
 brngA = Math.acos((Math.sin(lat2) - Math.sin(lat1) * Math.cos(dist12)) /
 (Math.sin(dist12) * Math.cos(lat1)));
 if (isNaN(brngA)) brngA = 0; // protect against rounding
 brngB = Math.acos((Math.sin(lat1) - Math.sin(lat2) * Math.cos(dist12)) /
 (Math.sin(dist12) * Math.cos(lat2)));

 if (Math.sin(lon2 - lon1) > 0) {
 brng12 = brngA;
 brng21 = 2 * Math.PI - brngB;
 } else {
 brng12 = 2 * Math.PI - brngA;
 brng21 = brngB;
 }

 alpha1 = (brng13 - brng12 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 2-1-3
 alpha2 = (brng21 - brng23 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 1-2-3

 if (Math.sin(alpha1) == 0 && Math.sin(alpha2) == 0) return null; // infinite intersections
 //if (Math.sin(alpha1) * Math.sin(alpha2) < 0) return null; // ambiguous intersection

180

 alpha3 = Math.acos(-Math.cos(alpha1) * Math.cos(alpha2) +
 Math.sin(alpha1) * Math.sin(alpha2) * Math.cos(dist12));
 dist13 = Math.atan2(Math.sin(dist12) * Math.sin(alpha1) * Math.sin(alpha2),
 Math.cos(alpha2) + Math.cos(alpha1) * Math.cos(alpha3))
 lat3 = Math.asin(Math.sin(lat1) * Math.cos(dist13) +
 Math.cos(lat1) * Math.sin(dist13) * Math.cos(brng13));
 dLon13 = Math.atan2(Math.sin(brng13) * Math.sin(dist13) * Math.cos(lat1),
 Math.cos(dist13) - Math.sin(lat1) * Math.sin(lat3));
 lon3 = lon1 + dLon13;

 lon3 = (lon3 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º

 intersection.lat = lat3 * 180 / Math.PI;
 intersection.long = lon3 * 180 / Math.PI;

 return intersection;
}

// returns the best flight path around a restricted area given a sortie that penetrates a restricted area
GeodeticCurve.prototype.DetermineOptimalPathAroundRest = function (restPoly) {
 var fltPaths;
 var optFltPath;
 //calculate the set of flight paths
 fltPaths = this.buildAltFlightPaths(restPoly);

 //select the flight path with the minimal distance
 optFltPath = selectShortestFlightPath(fltPaths);

 return optFltPath;
}

// Returns an array of possible flight paths around a restrictedPolygon object
GeodeticCurve.prototype.BuildAltFlightPaths = function (restPoly) {
 var fltPath, fltPath1, fltPath2;
 var fltSegments = new Array();
 var fltPaths = new Array();
 var fltSegOrigin;
 var fltSegDest;
 var fltSegInt;
 var geoCurvesOriginWpt = new Array();
 var geoCurvesWptDest = new Array();
 var geoCurvesOriginCtr;
 var geoCurvesCtrDest;
 var totalDist, geoCurvesWptToWpt;
 var maxAngleDiff = -180;
 var minAngleDiff = 180;
 var maxAngleDiffRev = -180;
 var minAngleDiffRev = 180;
 var maxOriginWptAz, minOriginWptAz;
 var maxWptDestRevAz, minWptDestRevAz;

 // calculate center of restricted area
 var centerWpt = restPoly.centerWpt();

 // create geodetic curve origin to center of restricted
 geoCurvesOriginCtr = VincentyDistance(this.fromLat, this.fromLong, centerWpt.lat, centerWpt.long);

 // create geodetic curve center of restricted to dest
 geoCurvesCtrDest = VincentyDistance(centerWpt.lat, centerWpt.long, this.toLat, this.toLong);

 for (var i = 0; i < restPoly.waypoints.length; i++) {

 // create geodetic curve origin to wpt
 geoCurvesOriginWpt[i] = VincentyDistance(this.fromLat, this.fromLong, restPoly.waypoints[i].lat,

 restPoly.waypoints[i].long);
 geoCurvesOriginWpt[i].LatMaxMin();

 //determine angular difference origin to center vs origin to waypoint

181

 var angleDiffFromCtr = geoCurvesOriginWpt[i].azimuth - geoCurvesOriginCtr.azimuth;
 if (angleDiffFromCtr > 180) {
 angleDiffFromCtr -= 360;
 }
 else if (angleDiffFromCtr < -180) {
 angleDiffFromCtr += 360;
 }

 //determine if wpt has the max or min azimuth
 if (angleDiffFromCtr > maxAngleDiff) {
 maxOriginWptAz = geoCurvesOriginWpt[i].azimuth;
 maxAngleDiff = angleDiffFromCtr;
 }
 if (angleDiffFromCtr < minAngleDiff) {
 minOriginWptAz = geoCurvesOriginWpt[i].azimuth;
 minAngleDiff = angleDiffFromCtr;
 }

 // create geodetic curves wpt to destination
 geoCurvesWptDest[i] = VincentyDistance(restPoly.waypoints[i].lat, restPoly.waypoints[i].long,
 this.toLat, this.toLong);
 geoCurvesWptDest[i].LatMaxMin();

 //determine angular difference center to destination vs waypoint to destination
 var angleDiffFromCtr = geoCurvesWptDest[i].reverseAzimuth - geoCurvesCtrDest.reverseAzimuth;
 if (angleDiffFromCtr > 180) {
 angleDiffFromCtr -= 360;
 }
 else if (angleDiffFromCtr < -180) {
 angleDiffFromCtr += 360;
 }

 //determine if wpt has the max or min azimuth
 if (angleDiffFromCtr > maxAngleDiffRev) {
 maxWptDestRevAz = geoCurvesWptDest[i].reverseAzimuth;
 maxAngleDiffRev = angleDiffFromCtr;
 }
 if (angleDiffFromCtr < minAngleDiffRev) {
 minWptDestRevAz = geoCurvesWptDest[i].reverseAzimuth;
 minAngleDiffRev = angleDiffFromCtr;
 }
 }

 for (var i = 0; i < restPoly.waypoints.length; i++) {
 // determine if selected waypoint has max or min azimuth from origin
 if (geoCurvesOriginWpt[i].azimuth == maxOriginWptAz || geoCurvesOriginWpt[i].azimuth ==
 minOriginWptAz) {
 // build flight segment origin to wpt
 fltSegOrigin = new flightSegment(this.fromLat, this.fromLong, restPoly.waypoints[i].lat,
 restPoly.waypoints[i].long, geoCurvesOriginWpt[i].distance / 1852.0);

 // begin building flight path
 fltSegments = [];
 fltSegments.push(fltSegOrigin);

 if (geoCurvesWptDest[i].reverseAzimuth == maxWptDestRevAz ||
 geoCurvesWptDest[i].reverseAzimuth == minWptDestRevAz) {
 // build flight segment wpt to dest
 fltSegDest = new flightSegment(restPoly.waypoints[i].lat, restPoly.waypoints[i].long,
 this.toLat, this.toLong, geoCurvesWptDest[i].distance / 1852.0);

 // add destination leg
 fltSegments.push(fltSegDest);
 totalDist = fltSegOrigin.dist + fltSegDest.dist;
 fltPath = new flightPath(fltSegments, totalDist);
 fltPaths.push(fltPath);
 }
 else {
 if (geoCurvesOriginWpt[i].azimuth == maxOriginWptAz) {

182

 // find wpt with min reverse az
 for (var j = 0; j < restPoly.waypoints.length; j++) {
 if (i != j) {
 if (geoCurvesWptDest[j].reverseAzimuth == minWptDestRevAz) {
 // build geocurve for wpt1 to wpt2
 geoCurvesWptToWpt = VincentyDistance(restPoly.waypoints[i].lat,
 restPoly.waypoints[i].long,
 restPoly.waypoints[j].lat,
 restPoly.waypoints[j].long);
 // build flight segment wpt1 to wpt2
 fltSegInt = new flightSegment(restPoly.waypoints[i].lat,
 restPoly.waypoints[i].long,
 restPoly.waypoints[j].lat,
 restPoly.waypoints[j].long,
 geoCurvesWptToWpt.distance / 1852.0);

 // build flight segment wpt to dest
 fltSegDest = new flightSegment(restPoly.waypoints[j].lat,
 restPoly.waypoints[j].long, this.toLat, this.toLong,
 geoCurvesWptDest[j].distance / 1852.0);

 // add destination leg
 fltSegments.push(fltSegInt);
 fltSegments.push(fltSegDest);
 totalDist = fltSegOrigin.dist + fltSegInt.dist + fltSegDest.dist;
 fltPath = new flightPath(fltSegments, totalDist);
 fltPaths.push(fltPath);
 }
 }
 }
 }
 else {
 // find wpt with max reverse az
 for (var j = 0; j < restPoly.waypoints.length; j++) {
 if (i != j) {
 if (geoCurvesWptDest[j].reverseAzimuth == maxWptDestRevAz) {
 // build geocurve for wpt1 to wpt2
 geoCurvesWptToWpt = VincentyDistance(restPoly.waypoints[i].lat,
 restPoly.waypoints[i].long,
 restPoly.waypoints[j].lat,
 restPoly.waypoints[j].long);
 // build flight segment wpt1 to wpt2
 fltSegInt = new flightSegment(restPoly.waypoints[i].lat,
 restPoly.waypoints[i].long,
 restPoly.waypoints[j].lat,
 restPoly.waypoints[j].long,
 geoCurvesWptToWpt.distance / 1852.0);

 // build flight segment wpt to dest
 fltSegDest = new flightSegment(restPoly.waypoints[j].lat,
 restPoly.waypoints[j].long, this.toLat, this.toLong,
 geoCurvesWptDest[j].distance / 1852.0);

 // add destination leg
 fltSegments.push(fltSegInt);
 fltSegments.push(fltSegDest);
 totalDist = fltSegOrigin.dist + fltSegInt.dist + fltSegDest.dist;
 fltPath = new flightPath(fltSegments, totalDist);
 fltPaths.push(fltPath);
 }
 }
 }
 }
 }
 }
 }

 return fltPaths;
}

183

Bibliography

Ai, T. J., & Kachitvichyanukul, V. (2009). A particle swarm optimization for the vehicle routing problem

with simultaneous pickup and delivery. Computers & Operations Research, 36(5), 1693-1702.

Air Force. (2010). Techincal Order 1C-5A-1-1. Department of Defense.

Air Force. (2010). Technical Order 1C-17A-1. Department of Defense.

Air Force. (2010). Technical Order 1C-5A-1. Department of Defense.

Air Force. (2011). Techincal Order 1C-130J-1. Department of Defense.

Air Force. (2011). Technical Order 1C-130J-1-1. Department of Defense.

Air Force. (2011). Technical Order 1C-17A-1. Department of Defense.

(2011). Air Force Instruction 11-2MDS Volume 3. Scott AFB, IL: HQ AMC/A3V.

(2011). Air Force Pamphlet 10-1403 Air Mobility Planning Factors. Department of Defense.

Alexander, D. R., & Hall, J. W. (1991). ACN-PCN concepts for airport pavement management.
Aircraft/Pavement Interaction@ sAn Integrated System, 393-405.

Babikian, R., Lukachko, S. P., & Waitz, I. A. (2001). Historical Fuel Efficiency Characteristics of Regional
Aircraft from Technological, Operational and Cost Perspectives. Journal of Air Transport
Management, 8(6), 389-400.

Baker, S., Morton, D., Rosenthal, R., & Williams, L. (2002). Optimizing Military Airlift. Operations
Research, 50(4), 582-602.

Balakrishnan, A., Chien, T., & Wong, R. (1989). Selecting Aircraft Routes for Long-haul Operations: A
Formulation and Solution Method. MIT Sloan.

Balas, E., & Padberg, M. W. (1972). On the Set Covering Problem. Operations Research, 20(6), 1152-
1161.

Balinski, M. L., & Quandt, R. E. (1964). On an Interger Program for a Delivery Problem. Operations
Research, 12(2), 300-304.

Barnes, J. W., Wiley, V. D., Moore, J. T., & Ryer, D. M. (2004). Solving the Aerial Fleet Refueling Problem
using Group Theoretic Tabu Search. Mathematical and Computer Modelling, 617-640.

Barney, J. (1986). Organizational culture: can it be a source of sustained competitive advantage?
Academy of Management Review, 656-665.

184

Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1),
99-120.

Becker, M. A., & Smith, S. F. (2000). Mixed-Initiative Resource Management: The AMC Barrel Allocator.

Bell, J. E., & McMullen, P. R. (2004). Ant colony optimization techniques for the vehicle routing problem.
Advanced Engineering Informatics, 18(1), 41-48.

Bodin, L. (1990). Twenty Years of Routing and Scheduling. Operations Research, 38(4), 571-581.

Brigantic, R. T., & Merrill, D. (2004). Algebra of Airlift. Mathematical and Computer Modelling, 649-656.

Burke, J. F., Love, R. J., & Macal, C. M. (2004). Modelling Force Deployments from Army Installations
using the Transportation System Capability (TRANSCAP) Model: A Standardized Approach.
Mathematical and Computer Modelling, 733-744.

Burstein, M., Ferguson, G., & Allen, J. (2003). Integrating Agent-Based Mixed-Initiative Control With An
Existing Multi-Agent Planning System. DARPA.

CFR. (2010). Title 14: Aeronautics and Space. Office of the Secretary, Department of Transportation, Sec
19-5.

Chang, T. S. (2008). Best routes selection in international intermodal networks. Computers & Operations
Research, 35(9), 2877-2891.

Clay, J. D. (1989). Temporal Constraint Propagation For Airlift Planning Analysis. Air Force Institute of
Technology Thesis, 1-122.

Crino, J., Moore, J., Barnes, J., & Nanry, W. (2004). Solving the Theater Distribution Vehicle Routing and
Scheduling Problem Using Group Theoretic Tabu Search. Mathematical and Computer Modeling,
599-616.

Crum, M. R., & Morrow, P. C. (2002). The influence of carrier scheduling practices on truck driver
fatigue. Transportation Journal, 20-41.

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91.

(2011). Digital Aeronautical Flight Information File. National Geospatial Intelligence Agency.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 269-
271.

Dyer, J. S., & Sarin, R. K. (1979). Measurable multi-attribute value functions. Opertions Research, 810-
822.

Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic Capabilities: What are they? Strategic Management
Journal, 21(10), 1105-1121.

185

FAA. (1996). FAA Federal Aviation Regulations Part 121 Section 481.

Ferguson, A. R., & Dantzig, G. B. (1954). The Problem of Routing Aircraft, a Mathematical Solution. (No.
P-561). RAND CORP SANTA MONICA CALIF.

Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4(1), 61-75.

Gagnepain, P., & Marin, P. (2007). The Effects of Airline Alliances: What do the Aggregate Data Say?
Journal of the Spanish Economic Association, 1(3), 251-276.

Gavaghan, M. (2013). Retrieved from Mike Gavaghan Blog: http://www.gavaghan.org/blog/free-source-
code/geodesy-library-vincentys-formula/

Gendreau, M., & Soriano, P. (1998). Airport pavement management systems: An appraisal of existing
methodologies. Transportation Research Part A: Policy and Practice, 197-214.

Gill, M. M. (2005). Output Analysis and Comparison of Deployment Models with Varying Fidelity. Air
Force Institute of Technology Thesis, 1-91.

Glover, F., & McMillan, C. (1986). The General Employee Scheduling Problem: An Integration of MS and
AI. Computer and Operations Research, 13(5), 563-573.

Google Maps. (2013). Retrieved from https://developers.google.com/maps/

Great Circle Mapper. (2013). Retrieved from http://www.gcmap.com

Gueret, C., Jussien, N., Lhomme, O., Pavageau, C., & Prins, C. (2003). Loading aircraft for military
operations. Journal of the Operational Research Society, 54(5), 458-465.

Hartlage, R. (2012). Rough-Cut Capacity Planning in Multimodal Freight Transportation Networks. Air
Force Institute of Technology Thesis, 1-110.

Hatch, M. (1993). The dynamics of organizational culture. Academy of Management, 18(4), 657-693.

Held, M., & Karp, R. (1962). A Dynamic Programming Approach to Sequencing Problems. Journal of the
Society for Industrial and Applied Mathematics, 10(1), 196-210.

Hileman, J., Katz, J., Mantilla, J., & Fleming, G. (2008). Payload Fuel Energy Efficiency as a Metric for
Aviation Environmental Performance. ICAS 2008 Proceedings.

Jackson, J. A., Kloeber, J. M., Ralston, B. E., & Deckro, R. F. (1999). Selecting a portfolio of technologies:
an application of decision analysis. Decision Sciences, 217=238.

Jackson, J., Jones, B., & Lehmkuhl, L. (1996). An Operational Analysis for Air Force 2025: An Application
of Value-Focused Thinking to Future Air and Space Capabilities. Air Command and Staff College.

Jin, J., Crainic, T. G., & Lokketangen, A. (2012). A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. European Journal of Operational Research.

186

(2009). Joint Publication 3-17 Air Mobility Operations. Department of Defense.

Karmarkar, N. (1984). A new polynomial time algorithm for linear programming. Combinatorica, 4(4),
373-395.

Keeney, R. L. (1994). Creativity in Decision making with Value Focused Thinking. Sloan Management
Review, 33-41.

Koepke, C. G., Armacost, A. P., Barnhart, C., & Kolitz, S. E. (2008). An integer programming approach to
support the US Air Force's air mobility network. Computers & Operations Research, 35(6), 1771-
1788.

Koskosidis, Y. A., Powell, W. B., & Solomon, M. M. (1992). An optimization-based heuristic for vehicle
routing and scheduling with soft time window constraints. Transportation Science, 26(2), 69-85.

Kress, M., & Golany, B. (1994). Optimizing the Assignment of Aircrews to Aircraft in an Airlift Operation.
European Journal of Operational Research, 77(3), 475-485.

Lahiri, K., Stekler, H. O., Yao, W. W., & Young, P. (2003). Monthly Output Index for the U.S.
Transportation Sector. Suny: University of Albany, Department of Economics.

Lambert, G. R. (2007). A Tabu Search Approach to the Strategic Airlift Problem. Military Operations
Research, 59-79.

Lee, J., Lukachko, S., & Waitz, I. (2004). Aircraft and Energy Use. Encyclopedia of Energy, 29-38.

Lei, H., Laporte, G., & Guo, B. (2011). The Capacitated Vehicle Routing Problem with Stochastic Demands
and Time Windows. Computers & Operations Research, 38(12), 1775-1783.

Lewis, I. (1998). The civil reserve air fleet: Balancing risks and incentives. Transportation Journal, 32-39.

Longo, H., de Aragão, M. P., & Uchoa, E. (2006). Solving capacitated arc routing problems using a
transformation to the CVRP. Computers & Operations Research, 33(6), 1823-1837.

Lund, J. B. (1993). An Assessment of Strategic Airlift Operational Efficiency. Project Air Force Analysis of
the Air War in the Gulf.

Lurdes, M., Anutnes, B., & Pinelo, A. (1990). Airport pavement evaluation and ACN-PCN classification.
Third international conference on bearing capacity of roads and airfields. Trondheim, Norway:
Tapir Publishers.

Martin, J. C., & Voltes-Dorta, A. (2011). The dilemma between capacity expansions and multi-airport
systems: Empirical evidence from the industry's cost function. Transportation Research Part E:
Logistics and Transportation Review, 382-389.

Mazraati, M. (2010). World Aviation Fuel Demand Outlook. Metropolitan University: OPEC Energy
Review.

187

Mihram, G., & Nolan, R. (1969). A Stochastic Simulation of the Strategic Airlift System. Proceedings of
the Third Conference on Apllications of Simulation, (pp. 184-192).

Miravite, A., & Schlegel, C. F. (2006). Global Enroute Basing Infrastructure Location Model. Air Force
Institute of Technology Graduate Research Paper.

Morton, D. P., Rosenthal, R. E., & Weng, L. T. (1995). Optimization Modeling for Airlift Mobility . (No.
NPS-OR-95-007). Naval Postgraduate School Monterey CA Dept of Operations Research.

Murphy, P., Dalenberg, D., & Daley, J. (1989). Improving international trade efficiency: airport and air
cargo concerns. Transportation Journal, 27-35.

Nagata, Y., Bräysy, O., & Dullaert, W. (2010). A penalty-based edge assembly memetic algorithm for the
vehicle routing problem with time windows. Computers & Operations Research, 37(4), 724-737.

Naylor, R. (2009). Improving and Extending the Mobility En Route System. Air Force Institute of
Technology Thesis.

Nielsen, C. A., Armacost, A. P., Barnhart, C., & Kolitz, S. E. (2004). Network Design Formulations for
Scheduling US Air Force Channel Route Missions. Mathematical and Computer Modelling, 39(6),
925-943.

Oster , C. V., Strong, J. S., & Zorn, C. K. (2013). Analyzing aviation safety: problems, challenges,
opportunities. Research in Transportation Economics, 148-164.

Owen, M. (2008). Fuel Efficiency Development and Prediction. OMEGA, Manchester Metropolitan
University.

Pascal, B. (1665). Traité de Triangle Arithmetique: avec quelques autres petits traiter sur la mesme
matiere. Chez Guillaume Desprez.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &
Operations Research, 34(8), 2403-2435.

Rappoport, H. K., Levy, L. S., Golden, B. L., & Feshbach, D. S. (1991). Estimating Loads of Aircraft in
Planning for the Military Airlift Command. Interfaces, 21(4), 63-78.

Rappoport, H. K., Levy, L. S., Golden, B. L., & Toussaint, K. J. (1992). A Planning Heuristic for Military
Airlift. Interfaces, 22(3), 73-87.

Rathi, A. K., Church, R. L., & Solanki, R. S. (1992). A Macro Level Analysis of the Airlift Deployment
Problem. Computers & Operations Research, 19(8), 731-742.

Regulations, C. o. (2010). Title 14: Aeronautics and Space. Office of the Secretary, Department of
Transportation, Sec 19-5.

188

Reiman, A., Johnson, A., & Cunningham, W. (2011). Competitive Advantage and Fuel Efficiency in
Aviation. Journal of Transportation Management, 22(2), 75-91.

Reiman, A., Weir, J., Johnson, A., & Dube, T. (2014). Distance Value Model for Nodal Reduction of the
Strategic Airlift Problem. Pending Publication.

Rink, K. A., Rodin, E. Y., Sundarapandian, V., & Redfern, M. A. (1999). Routing Airlift Aircraft by the
Double-Sweep Algorithm. Mathematical and Computer Modelling, 30(5), 133-147.

Ruan, Q., Zhang, Z., Miao, L., & Shen, H. (2011). A Hybrid Approach for the Vehicle Routing Problem with
Three-Dimensional Loading Constraints. Computers & Operations Research.

Rutherford, D., & Zeinali, M. (2009). Efficiency Trends for New Commercial Jet Aircraft. International
Council on Clean Transportation. Washington DC.

Samm, S., & Perelli, L. (1982). Estimating Aircrew Fatigue: A technique with Application to Airlift
Operations. Brooks AFB, TX: School of Aerospace Medicine.

Schein, E. (1984). Coming to a New Awareness of Organizational Culture. Sloan Management Review,
25(2), 3-15.

Schmenner, R. W. (2001). Looking Ahead by Looking Back: Swift, Even Flow in the History of
Manufacturing. Production and Operations Management, 10(1), 87-96.

Schmenner, R. W. (2004). Service Businesses and Productivity. Decision Sciences, 35(3), 333-347.

Schmenner, R. W., & Swink, M. L. (1998). On Theory in Operations Management. Journal of Operations
Management, 17(1), 97-113.

Sere, M. (2005). Strategic Airlift En Route Analysis and Considerations to Support the Global War on
Terrorism. Wright Patterson AFB, OH: Air Force Institute of Technology Graduate School of
Engineering Management.

Thomchick, E. (1993). The 1991 Persian Gulf War: short-term impacts on ocean and air transportation.
Transportation Journal, 40-53.

Tryon, J. E. (2005). An Evaluation of Contingency Construction Methods Using Value Focused Thinking.
Air Force Institute of Technology Thesis, 1-116.

USAF. (2011). Air Force Instruction 11-2MDS Volume 3. Scott AFB, IL: HQ AMC/A3V.

Vincenty, T. (1975). Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested
Equations. FE Warren AFB, Wyoming: DMAAC Geodetic Survey Squadron.

Watson, F. (2003). The Air Mobility Planner's Calculator: Improvements, Verification and Validation.
Dayton, OH: Air Force Institute of Technology.

189

Weir, J. D., & Johnson, E. L. (2004). A three-phase approach to solving the bidline problem. Annals of
Operations Research, 283-308.

Wilkins, D. E., Smith, S. F., Kramer, L. A., Lee, T. J., & Rauenbusch, T. W. (2008). Airlift Mission Monitoring
and Dynamic Rescheduling. Engineering Applications of Artificial Intelligence, 21(2), 141-155.

Wu, T. T., Powell, W. B., & Whisman, A. (2009). The Optimizing-Simulator: An Illustration Using the
Military Airlift Problem. ACM Transactions on Modeling and Computer Simulation (TOMACS),
19(3), 14.

Yamani, A., Hodgson, T., & Martin-Vega, L. (1990). Single Aircraft Mid-Air Refueling using Spherical
Distances. Operations Research, 792-800.

1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD–MM–YYYY)
18-09-2014

2. REPORT TYPE
Dissertation

3. DATES COVERED (From — To)
Sep 2011 - Sep 2014

4. TITLE AND SUBTITLE

Enterprise Analysis of Strategic Airlift to Obtain
Competitive Advantage through Fuel Efficiency

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Reiman, Adam D., Lieutenant Colonel, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN),
2950 Hobson Way
WPAFB, OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER
AFIT-ENS-DS-14-S-16

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
United States Transportation Command
Joint Distribution Process Analysis Center
Attn: Pat Mcleod
508 Scott Drive DSN: 770-5238
Scott Air Force Base, IL 62225-5357
Patrick.k.mcleod.civ@mail.mil

10. SPONSOR/MONITOR’S ACRONYM(S)
USTRANSCOM/TCAC
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A: Approved For Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in
the United States.
14. ABSTRACT

The rising cost of fuel has led to increasing emphasis on fuel efficiency in the aviation industry. As fuel
costs become a larger proportion of total costs, those entities with a dynamic capability to increase
their fuel efficiency will obtain competitive advantage. Assessing cargo throughput and fuel efficiency
requires the creation of all routes of potential value for a given set of requirements that need to be
airlifted from source to destination airfield. The time required for route computation can be significantly
reduced through the use of nodal reduction. Use of the proposed model can assist evaluation of
enterprise wide efficiency and effectiveness.

15. SUBJECT TERMS
Strategic Airlift Problem, Fuel Efficiency, Value Model, Nodal Reduction, Cargo Throughput

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

205

19a. NAME OF RESPONSIBLE PERSON
Jeffery D. Weir, AFIT/ENS

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)
(937) 255-3636 x0000 Jeffrey.Weir@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	II. Literature Review
	Airlift Metrics
	Competitive Advantage
	Alliancing
	Organizational Culture
	Routing
	Tabu Search
	Value Focused Thinking
	Scheduling

	III. Original Contribution
	IV. Journal Articles
	Competitive Advantage and Fuel Efficiency in Aviation
	Introduction
	Aviation Fuel Efficiency and Dynamic Capabilities
	Fuel Efficiency Index
	The Data
	Great Circle Distance
	Load Factors
	Inactive Sorties
	Fuel
	Managerial Implications for City Pair Analysis
	Incorporating Metrics into the Aviation Industry Fuel Efficiency Model
	Findings and Conclusion

	Distance Value Model for Nodal Reduction of the Strategic Airlift Problem
	Introduction
	Airlift Distance Value Model
	Payload Movement
	Cycle Complete
	Fuel Efficiency
	Circadian Rhythm
	Material Airlift Distance Value Model Weights
	Cutoff Distance Model
	Results
	Conclusion

	Nodal Reduction Heuristics Applied to Route Generation for Enterprise Airlift Evaluation
	Introduction
	Requirements
	Requirement based heuristics
	Minimum cutoff distance
	Total distance multiple
	Airfield characteristic heuristics
	Effective runway length
	Runway width
	Pavement strength
	Departure obstacles
	Diplomatic clearances
	Combined nodal reduction
	Speed and Accuracy
	Conclusion

	V. Methodology
	Route Alternative Generation
	Route Comparison

	VI. Results
	Aircraft Type
	Crew Complement
	Staging
	Trans-load
	Air Mobility Command Routes

	VII. Conclusions
	Appendix A: Nodal Reduction and Route Generation Algorithms
	Appendix B: Aircraft Performance Algorithms
	Appendix C: Airfield, Distance, Pavement and Airspace Algorithms
	Bibliography

